期刊文献+

知识库的精细关系比较 被引量:2

The Comparison of Finer Relations in the Knowledge Bases
原文传递
导出
摘要 比较知识库精细关系的两种不同定义,得出等价关系与划分、二元关系与覆盖、以及二元关系与覆盖约简之间的一些有趣联系;进而探讨这两种定义在粗糙集中对提高知识确定性程度的不同作用。这些结论将对基于粗糙集的不确定性研究提供一定的帮助。 This paper mainly compared the two definitions of finer relations in the knowledge bases,drawing some interesting conclusions on the equivalence relations and partitions,the binary relations and coverings,as well as the links of the binary relations and reductions of coverings.What's more,we discussed these two definitions' different functions of improving degree of certainty in the rough sets.All these conclusions will contribute to the research of the indetermination theory based on the rough sets.
出处 《模糊系统与数学》 CSCD 北大核心 2011年第2期138-145,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(10671173 10971186) 漳州师范学院科学研究项目(SK09019)
关键词 知识库 等价关系 划分 二元关系 覆盖 覆盖约简 确定性 Knowledge Base Equivalence Relation Partition Binary Relation Covering Reduction of Covering Degree of Certainty
  • 相关文献

参考文献12

二级参考文献44

  • 1王虹,张文修,李鸿儒.粗糙模糊集的不确定性度量[J].计算机工程与应用,2005,41(2):51-52. 被引量:11
  • 2徐菲菲,苗夺谦,李道国,魏莱.基于覆盖的粗糙模糊集的粗糙熵[J].计算机科学,2006,33(10):179-181. 被引量:13
  • 3Zhu W, Wang F Y. Reduction and axiomization of covering generalized rongh sets[J]. Information Sciences, 2003, 152:217-230.
  • 4Banerjee,Pal S K. Roughness of a fuzzy set[J]. Information Sciences, 1996,93: 235.
  • 5Zakowski W. Approximations in the Space (U, R). Demonstratio.Mathematica, 1983, 16:761-769.
  • 6Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U. Extensions and Intentions in the Rough Set Theory. Information Science,1998, 107:149-167.
  • 7Bonikowski Z. Algebraic Structures of Rough Sets. In: Ziarkow P,ed. Rough Sets, Fuzzy Sets and Knowledge Discovery. London:Springer-Verlag, 1994, 243 - 247.
  • 8Bryniaski E. A Calculus of Rough Sets of the First Order. Bulletin of the Polish Academy of Sciences, 1989, 37(16) : 71 - 77.
  • 9Pomykala J A. Approximation Operations in Approximation Space.Bulletion of the Polish Academy of Science, 1987, 35(9 - 10) : 653- 662.
  • 10KellyJL 著 吴从析 吴让泉 译.一般拓扑学[M].北京:科学出版社,1982..

共引文献67

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部