期刊文献+

具有代数衰减的边界层问题 被引量:6

SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS WITH ALGEBRAIC DECAY BOUNDARY LAYER
下载PDF
导出
摘要 本文研究了不满足Tikhnov定理中稳定性要求的一类常微分方程奇摄动边值问题.利用边界层函数法以及微分不等式理论,分别构造了渐进解的形式和证明了解的存在性和渐近解一致有效性并进行了余项估计,得出了该类问题边界层代数式衰减的结论. In this article,a class of boundary value problems for the singularly perturbed ordinary differential equations with the stability condition of Tikhnov theorem fails is considered.The corresponding asymptotic solutions are constructed by the method of boundary layer function.By using theory of differential inequality,the existence of the solution and the uniform validity of its asymptotic solutions are proved and the remainder estimate is derived.The algebraic decay of boundary layer for this class of problems is concluded.
出处 《数学杂志》 CSCD 北大核心 2011年第3期488-494,共7页 Journal of Mathematics
基金 国家自然科学基金(10671070) 上海市教育委员会E-研究院建设项目(E03004) 地理信息科学教育部重点实验室开放课题 上海市重点学科建设项目(B407)
关键词 奇摄动 渐近解 代数衰减 singular perturbation asymptotic solutions algebraic decay
  • 相关文献

参考文献7

  • 1Tikhonov A N. The dependence of differential equation's solution on small parameter [J]. Mathe- matical Notes, 1948, 22 (64): 193-204.
  • 2Tikhonov A N. Differential equations with small parameter [J]. Mathematical Notes, 1950, 27 (69): 147-156.
  • 3Tikhonov A N. Differential equations with small parameter in the higher order derivatives [J]. Mathematical Notes, 1952, 31 (37): 575- 586.
  • 4Vasil'eva A B. The development survey of differential equation theory with small parameter in the higher order derivatives during 1966-1967 [J]. Advances in Mathematics, 1976, 31 (6): 102-122.
  • 5Vasil'eva A B. The development survey of the method of small parameter, computational mathe- matics and mathematical physics in control theory [M]. Moscow: Nauka, 1977.
  • 6Vasil'eva A B, Butuzov V F. Asymptotic expansion of solutions of singularly perturbed equations [M]. Moscow: Nauka, 1973.
  • 7Nagumo M. Ueber die. diff. y" = f(x, y.y')[J]. Proc. Phyc. Math. Soc. Japan, 1937, 19: 861-866.

同被引文献20

  • 1Zhou Mingru.BOUNDARY AND CORNER LAYER BEHAVIOR IN SINGULARLY PERTURBED ROBIN BOUNDARY VALUE PROBLEM[J].Annals of Differential Equations,2005,21(4):639-647. 被引量:8
  • 2[4]章国华,Howes F A.非线性奇异摄动现象:理论和应用[M].福州:福建科技出版社,1989,6-9.
  • 3Fenichel N. Geometric singular perturbation theory for ordinary differential equations. Journal of Differ- ential Equations, 1979, 31:53-98.
  • 4Vasil'eva Adelaida B. The boundary function method for singularly perturbed problems. Philadelphia: SI AM Studies in Applied Mathematics, 1995.
  • 5瓦西里耶娃,布图索夫著,倪明康,林武忠译.奇异摄动方程解的渐进展开.北京:高等教育出版社,2008.
  • 6Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31:53 98.
  • 7Vasil'eva A B. The Boundary Function Method for Singularly Perturbed Problems. Philadelphia: SIAM Studies in Applied Mathematics, 1995.
  • 8章国华,侯斯著,林宗池等译.非线性奇异摄动现象:理论和应用.福州:福建科学技术出版社,1989.
  • 9Roberts S M. On the solution of aye' = y3. j Optim Theory Appl, 1986, 50:535-541.
  • 10史少云.化学催化反应过程中的一类奇异摄动边值问题[M].长春:吉林大学,1996.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部