期刊文献+

生物与化学成因施氏矿物吸附去除水中As(Ⅲ)效果的比较研究 被引量:4

Removal of As(Ⅲ) in simulated groundwater through adsorption by biosynthesized or chemosynthesized schwertmannite
原文传递
导出
摘要 施氏矿物作为一种具有良好应用前景的高砷吸附材料已倍受人们关注.采用静态吸附实验对生物、化学成因施氏矿物去除模拟地下水中As(Ⅲ)进行了研究.结果表明,在25℃,初始As(Ⅲ)浓度为0.2mg·L-1,施氏矿物投加量为0.25g·L-1时,生物成因施氏矿物吸附3h后溶液中As(Ⅲ)含量降低到10μg·L-1以下(地下水饮用标准),吸附最佳pH范围为6~10,化学成因施氏矿物在pH7~8,则需吸附平衡12h后溶液中As(Ⅲ)含量才能达到10μg·L-1以下.当介质中存在PO43-和SiO32-时,生物成因施氏矿物表现出对As(Ⅲ)专性吸附能力强于化学成因施氏矿物.等温吸附实验(25℃)表明,生物成因施氏矿物对As(Ⅲ)的最大吸附量为101.9mg·g-1,比化学成因施氏矿物(82.1mg·g-1)高出约24.1%,表现出更优异的吸附性能. Schwertmannite has been focused on more and more on account of its extensive application prospect in removing arsenic in water and wastewater.Static adsorption experiments were carried out in this study to investigate the removal of As(Ⅲ) from simulated groundwater via adsorption of schwertmannite formed by biological or chemical procedures.The results showed that 0.2 mg · L-1 of initial As(Ⅲ) in simulated groundwater could be drastically reduced to lower than 10 μg · L-1 with 0.25 g · L-1 of biosynthesized schwertmannite at 25 ℃ after 3 h of adsorption.The optimum pH for As(Ⅲ) adsorption by biosynthesized schwertmannite was 6~10.However,chemosynthesized schwertmannite required at least 12 h to eliminate As(Ⅲ) of the same initial concentration to meet the discharge standard(10 μg · L-1)at pH 7~8.Moreover,biosynthesized schwertmannite exhibited stronger specific adsorption capacity of As(Ⅲ) than that of the chemosynthesized mineral in simulated groundwater with co-existing competing anions like PO3-4 or SiO2-3.In addition,the adsorption isotherm indicated that biosynthesized schwertmannite had a maximum sorption capacity of 101.9 mg · g-1 As(Ⅲ),which was 24.1% higher than chemosynthesized schwertmannite(82.12 mg · g-1).
出处 《环境科学学报》 CAS CSCD 北大核心 2011年第5期912-918,共7页 Acta Scientiae Circumstantiae
基金 国家自然科学基金项目(No. 40930738 21077053)~~
关键词 施氏矿物 生物合成 化学合成 As(Ⅲ) 地下水 吸附 schwertmannite biosynthesis chemosynthesis arsenite groundwater adsorption
  • 相关文献

参考文献28

  • 1Bigham J M, Schwertmann U, Carlson L. 1990. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ) in acid mine waters [J]. Geochim Cosmochim Acta, 54:2743-2758.
  • 2Burton E D, Bush R T, Johnston S G, et al. 2009. Sorption of Arsenic (Ⅴ) and Arsenic (Ⅲ) to Sehwertmannite [J]. Environ Sci Technol, 43:9202-9207.
  • 3Burton E D, Bush R T, Sullivan L A, et al. 2008. Schwertmannite transformation to goethite via the Fe(Ⅱ) pathway: Reaction rates and implications for iron-sulfide formation [ J ]. Geochim Cosmochim Acta, 72 (18): 4551-4564.
  • 4陈春宁,石林,刘金香,谢水波.水中竞争性阴离子对Fe^0除砷效率的影响研究[J].南华大学学报(自然科学版),2006,20(4):51-54. 被引量:6
  • 5丁爱中,陈海英,程莉蓉,高海东.地下水除砷技术的研究进展[J].安徽农业科学,2008,36(27):11979-11982. 被引量:17
  • 6Dixit S, Hering J G. 2003. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility [J]. Environ SciTechnol, 37(18) :4182-4189.
  • 7Fukushi K, Sato T, Yanase N. 2003. Solid-solution reactions in As( V ) sorption by schwertmannite[J]. Environ Sei Technol,37:3581-3586.
  • 8Guo X J, Chen P H. 2005. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater [ J ]. Environ Sci Technol, 39:6808-6818.
  • 9郭学军,陈甫华.载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水砷(Ⅲ)的研究[J].高等学校化学学报,2005,26(7):1258-1263. 被引量:8
  • 10Izumi Y, Masih D, Aika K, et al. 2006. Creation of micro and mesoporous Fe^Ⅲ materials utilizing organic template followed by carboxylates exchange for the low concentrations of arsenite removal [J]. Micro Mesopor Mat, 94:243-253.

二级参考文献194

共引文献300

同被引文献54

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部