摘要
针对直接利用Monte Carlo方法进行接触网结构抗风可靠性分析耗时长的缺点,将有限元数值分析、高性能的RBF神经网络和Monte Carlo方法有机结合,提出了分析接触网结构抗风可靠性的FE-RBF-Monte Carlo方法,并用实例证明了该方法的可行性。分析表明:该方法精度高、简便易行,有效解决了直接利用Monte Carlo方法耗时长的问题,为复杂的接触网结构动力可靠性分析提供了一条新途径。
To improve effectively the shortcoming of time-consuming large in using directly Monte Carlo method,the theory of artificial neural networks and Monte Carlo algorithm combined with analysis of finite elements(simplified as the FE-RBF-Monte Carlo method) were applied to dynamic reliability analysis under wind load.It is done to organically combine with the finite element numerical analysis,high-powered RBF-NN and Monte Carlo method,then the feasibility of this method was proved by an example.The analysis indicates that the method is feasible,effective,and of high accuracy;it improves effectively the shortcoming of time-consuming large in using directly Monte Carlo method.The method provides a new way for dynamic reliability analysis of a complex catenary.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2011年第9期1018-1022,共5页
China Mechanical Engineering
基金
铁道部科技研究开发计划资助项目(2008J019)
关键词
接触网
动力可靠性
神经网络
风荷载
catenary
dynamic reliability
neural network
wind load