期刊文献+

异质知识网络相关度算法研究 被引量:2

Research on Relatedness Algorithms in Heterogeneous Knowledge Network
下载PDF
导出
摘要 异质知识网络是Web2.0的基础,其中的相关度算法是实现通过信息检索人、资源或通过人检索信息、资源的关键。然而目前的相关度算法研究大多局限于同质知识网络,忽略了在异质知识网络中的研究。因此,本文结合异质知识网络所具有的特性,明确异质知识网络相关度的定义,进而对现有的相关度算法分析的基础上,总结并归纳适用于异质知识网络的相关度算法,并根据Web2.0环境下产生的社会性信息检索需求,进一步说明其未来的发展趋势。 Heterogeneous knowledge network is the foundation of Web 2.0.Relatedness algorithms in those networks are critical for retrieving people,resources through information or retrieving information through people,resources.But the current research is limited to homogeneous knowledge networks and ignores that in heterogeneous knowledge networks.For the above,this paper puts forward the definition of the relatedness of heterogeneous knowledge network,summarizes the relatedness algorithms for heterogeneous knowledge networks,and shows its future trends,based on the analysis of existing relatedness algorithms and social information search requirements caused by Web 2.0.
出处 《情报学报》 CSSCI 北大核心 2011年第5期495-502,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金(批准号:07CTQ006)
关键词 异质知识网络 同质知识网络 相关度算法 heterogeneous knowledge networks homogeneous knowledge networks relatedness algorithm
  • 相关文献

参考文献22

二级参考文献255

共引文献462

同被引文献24

  • 1王元珍,钱铁云,冯小年.基于关联规则挖掘的中文文本自动分类[J].小型微型计算机系统,2005,26(8):1380-1383. 被引量:13
  • 2Metaler D, I)umais S C, Meek C. Similarity Measures for Short Segments of Text[ C ]. In : Proceedings of the 29th European Con- ference on Information Retrieval. Berlin : Springer - Verlag, 2007.
  • 3Sahami M, Heilman T D. A Web -based Kernel Function for Measuring the Similarity of Short Text Snippets [ C ]. In : Proceed- ings of the 15th International World Wide Web Conference Committee (1W3C2) , Edinburgh, Scotland. New York: ACM Press, 2006: 377 - 386.
  • 4Hynek J, Jezek K, Rohlik O. Short Document Categorization - Itemsets Method[ C ]. In : Proceedings of the 4th European Confer- ence on Principles and Practice of Knowledge Discovery in Databas- es, Workshop Machine Learning and Textual luformation Access, Lyon, France. 2000 : 14 - 19.
  • 5Zelikovitz S, Transductive M F. Learning for Short - Text Classifi- cation Problem Using Latent Semantic Indexing Intematiotaal [ J ]. Journal of Pattern Recognition and Artificial Intelligence, 2005, 19 (2) :143 - 163.
  • 6Wang P, Domeniconi C. Building Semantic Kernels for Text Classi- fication Using Wikipedia [ C ]. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada,USA. ACM :New York ,2008:713 - 721.
  • 7Wikipedia[ EB/OL]. [2011 - 12 - 08 ]. http://zh, wikipedia. org.
  • 8I ; Saltort G, McGillM J. Introduction to Modern Information Retrieval [M]. New York, NY, USA:McGraw Hill, 1983.
  • 9教育部.教高[2002]3号[EB/OL].http://www.edu. ,2013-02-18.
  • 10用庆平,朱开忠,等.图书馆工作概论[M].安徽:安徽科学技术出版社,2007:1,111.

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部