期刊文献+

随机共振参数的自适应调整策略与性能分析 被引量:3

Analysis on Stochastic Resonance Parameters Adaptive Adjusting
原文传递
导出
摘要 针对非线性随机共振技术受信号的幅度、频率、噪声强度和系统参数等因素的制约和影响,提出了一种快速、有效的随机共振系统参数自适应调整策略.对于输入信号和噪声的时变特性,新方法能自适应调节采样频率和系统参数,不仅有效防止了随机共振处理过程中的数据溢出,而且保证了对接收信号的最佳随机共振处理,使输出信噪比始终处于最大值.仿真结果验证了新方法的有效性. Considering the stochastic resonance phenomenon is constrained and influenced by signal amplitude and frequency, noise intensity and system parameters, a fast and effective adaptive adjusting method for stochastic resonance (SR) parameters is proposed. The adaptive adjustment of the sampling frequency and system parameters for the time-varying input signal and noise not only can effectively pre- vent data overflow in SR process, but also can maintain the best signal processing performance and keep the output signal to noise ratio at the maximum value. Simulation demonstrates the validity of proposed method.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第2期22-25,30,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家科技重大专项项目(2010ZX03006-002-04) 国家自然科学基金项目(61072070) 新世纪优秀人才支持计划项目(NCET-07-0653) 国家高技术研究发展计划项目(2009AA01Z237) 高等学校学科创新引智计划项目(B08038) 长江学者和创新团队发展计划项目(IRT0852)
关键词 随机共振 微弱信号检测 参数自适应调整 stochastic resonance weak signal detection parameters adaptively adjusti
  • 相关文献

参考文献4

  • 1Jin Yuanwei, Moura J. Time-reversal detection using antenna arrays [ J ]. IEEE Trans Signal Processing, 2009, 57(4) : 1396-1414.
  • 2Marco Guerriero, Stefano Marano, Vincenzo Matta, et al. Stochastic resonance in sequential detectors [ J ]. IEEE Trans Signal Processing, 2009, 14( 1 ) : 2-15.
  • 3Sutera Benzi A, Vulpiani A. The mechanism of stochastic resonance [ J ]. Journal of Physics A: Mathematical and General, 1981, 14: 453-457.
  • 4Hu Niaoqing, Chen Min, Wen Xisen. The application of stochastic resonance theory for early detecting rub-impact fault of rotor system [ J]. Mechanical Systems and Signal Processing, 2003, 17(4) : 853-895.

同被引文献42

  • 1林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(7):3277-3282. 被引量:48
  • 2冷永刚,王太勇,郭焱,吴振勇.双稳随机共振参数特性的研究[J].物理学报,2007,56(1):30-35. 被引量:55
  • 3赵文礼,田帆,邵柳东.自适应随机共振技术在微弱信号测量中的应用[J].仪器仪表学报,2007,28(10):1787-1791. 被引量:17
  • 4Beniz R, Sutera A, Vulplani A. The mechanism of stochastic resonance[J]. J Phy A: Math Gen, 1981, 14(11) : 453-457.
  • 5Deng H, Zhang L. Study on the application of weak signal recovery system based on the stochastic reso nance[J]. Key Engineering Materials, 2011, 474 476:1033-1037.
  • 6Godiver X, Chapeau-Blondeau F. Stochastic reso nance in the information capacity of a nonlinear dy namic system[J]. International Journal of Bifurcation and Chaos, 1998, 8(3): 581-589.
  • 7Krawiecki A. Stochastic resonance in a system of coupled chaotic oseillators[J].Acta Physica Poloni- ca: B, 1999, 30(8): 2489-2498.
  • 8Burada P S, Sehmid G, Reguera D, et al. Entropic stochastic resonance[J]. Phys Rev Lett, 2008, 101: 1-4.
  • 9Deng H, Shang E, Xiang B, et al. Application of the stochastic resonance algorithm to the simultaneous quantitative determination of multiple weak peaks of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry[J]. Rapid Commun Mass Speetrom, 2011, 25: 563-571.
  • 10Nozaki D, Collins J J, Yamamoto Y. Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise[J]. Physical Review: E, 1999, 60(4) : 4637-4644.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部