期刊文献+

工业软测量模型结构与输入变量选择的研究 被引量:5

Research on Model Structure and Input Variable Selection for Industry Soft Sensing
原文传递
导出
摘要 针对过程工业中难以直接测量的变量建立其软测量模型,对于实现关键指标的在线监测和实时控制具有十分重要的意义。变量的选择直接关系到神经网络软测量模型的预测性能,针对现有输入变量和网络结构选择方法在工业应用中的不足,提出了一种基于敏感度分析的方法来确定网络输入变量集和前馈神经网络隐含层节点个数,并建立了高密度聚乙烯(HDPE)产品质量指标熔融指数(M I)软测量模型,以实际工业应用验证了该方法的有效性。 Since some important process variables are difficult to be measured in real time for industrial processes, the establishment of soft sensing model plays an important role in on-line monitoring and real-time controlling of the key indicators. The variables selection is relevant to the prediction ability of neural network soft-sensing model. A method based on sensitivity analysis is prolided, aiming to confirm the input variable set and the number of hidden layer nodes more accurately against the deficiency of existing methods in industry application. And the soft-sensing model of Melt Index, which is the indicator of high-density polyethylene product quality is trained and tested by BP Neural Network. The industry example indicates that the method is effective.
作者 朱群雄 郎娜
出处 《控制工程》 CSCD 北大核心 2011年第3期388-392,共5页 Control Engineering of China
基金 国家自然科学基金项目(60774079)
关键词 软测量 敏感度分析 输入变量选择 隐含层节点 soft sensing sensitivity analysis input variable selection hidden layer nodes
  • 相关文献

参考文献15

  • 1马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519. 被引量:27
  • 2Petr Kadlec, Bogdan Gabrys,Sibylle Strandt. Data-driven Soft Sensors in the process industry [ J ]. Computers & Chemical Engineering,2009,33 (7) :795-814.
  • 3J C B Gonzaga,L A C Meleiro,C Kiang,R Maciel Filho. ANN- based soft-sensor for real-time process monitoring and control of an industrial polymerization process[J]. Computers & Chemical Engineering,2009,33 ( 1 ) :43-49.
  • 4Drezga I, RAhman S. Input variable selection for ANN-based shortterm load forecasting[ J]. IEEE Trans on Power Systems, 1998,13 (4) : 1238-1244.
  • 5Mastorocostas P A,Theocharis J B, Bakirtzis A G. Fuzzy modeling for short term load forecasting using the orthogonal least squares method [ J]. IEEE Trans on Power Systems, 1999,14 ( 1 ) :29-36.
  • 6H. Saxen, F. Pettersson. Method for the selection of inputs and structure of feedforward neural networks [ J ]. Computers and Chemical Engineering ,2006,30 (6-7) : 1038-1045.
  • 7Robert J May, Holger R. Maier, Graeme C Dandy, T. M. K. Gayani Femando. Non-linear variable selection for artificial neural networks using partial mutual information [ J ]. Environmental Modelling & Software. 2008,23 ( 10-11 ) : 1312-1326.
  • 8高仁祥,张世英,刘豹.基于神经网络的变量选择方法[J].系统工程学报,1998,13(2):32-37. 被引量:56
  • 9Chang Jou, Shih-Shien You, Long-Wen Chang. Analysis of hidden nodes for multi-layer perceptron neural networks[ J]. Pattern Recognition, 1994,27 ( 6 ) : 859 -864.
  • 10Lin Zhang,Jian-Hui Jiang,Ping Liu,Yi-Zeng Liang, Ru-Qin Yu. Multivariate nonlinear modelling of fluorescence data by neural network with hidden node pruning algorithm. [ J ]. Analytica Chimica Acta, 1997,344 ( 1-2 ) : 29-39.

二级参考文献14

  • 1魏海坤,宋文忠,李奇.基于RBF网络的火电机组实时成本在线建模方法[J].中国电机工程学报,2004,24(7):246-252. 被引量:15
  • 2杨勇平,王加璇.火电机组耗量特性的在线确定与机组间负荷最优分配[J].电站系统工程,1995,11(3):18-21. 被引量:18
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 4[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634.
  • 5Li K C,Ann Stat,1989年,12卷,887页
  • 6AP Engelbrecht. Incremental Learning using Sensitivity Analysis[C] . IEEE International Joint Conference on Neural Networks, Washington DC, 1999: 1350- 1355.
  • 7Morris A J, Montague G A, Tham M T. Soft-sensors in industrial process control. Applied developments in process control. London, UK, 1989.
  • 8Kresta J V, Marlin T E, MacGrego J F. Development of inferential process models using PLS. Computers & Chemical Engineering, 1994, 18 (7): 597 -611.
  • 9Park Sungyong, Han Chonghun. Nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns. Computers & Chemical Engineering, 2000, 24 (2): 871-877.
  • 10Shaw A M, Doyle F J, Schwaber J S. Dynamic neural network approach to nonlinear process modeling. Computers & Chemical Engineering, 1997, 21 (4): 371-385.

共引文献400

同被引文献54

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部