期刊文献+

基于LS-SVM的一类非线性系统的性能估计

Performance Assessment for a Class of Non-Linear Systems Based on LS-SVM
原文传递
导出
摘要 控制系统性能估计的研究多数针对线性系统,但是非线性系统本质上更加复杂,用传统的方法进行估计存在局限性。对于一类可由非线性部分叠加线性干扰表示的非线性系统,首先分析了其反馈不变量的存在性,指出此类系统性能估计的关键在于构造超前预测模型。接着用最小二乘支持向量机辨识非线性模型,把最小方差性能估计问题转换成模型参数辨识问题,辨识参数的同时可得系统最小方差估计值。最后通过一个仿真实例把方法和前人所述方法进行了比较,仿真结果验证了方法的有效性。 The study of performance assessment mostly considers linear systems. Owing to the complexity of non-linear systems, assessing the performance using conventional methods has some insufficiency. For a class of non-linear processes that can be described by the superposition of a non-linear dynamic model and additive linear disturbance, the minimum variance feedback invariant has been proved to be existent. The emphasis of estimating minimum variance performance bound is to construct b-step ahead representation. The least squares support vector machine is used to identify the non-linear system model. Furthermore, the problem of performance assessment can be equal to a step of parametric model identification. The minimum variance can be estimated from the process of model identification. A simulation example indicates that this approach gives more credible estimates of minimum variance performance bound than other methods.
作者 王志国 刘飞
出处 《控制工程》 CSCD 北大核心 2011年第3期405-409,共5页 Control Engineering of China
基金 国家自然科学基金项目(60974001) 江苏省基础研究计划(自然科学基金)(BK2009068)
关键词 非线性系统 性能估计 最小二乘支持向量机(LS-SVM) AIC准则 non-linear systems performance assessment least squares support vector machine AIC
  • 相关文献

参考文献14

  • 1Suykens J. A. K, Vandewalle J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters. 1999,9 (3) :293 - 300.
  • 2T J Harris, Assessment of control loop performance[ J] , Canadian Journal of Chemical Engineering. 1989,67 (2) :856 861.
  • 3S. J. Qin, Control performance monitoring a review and assessment [ J ], Computers & Chemical Engineering. 1998,23 : (7) 173 186.
  • 4Huang, B. , Shah, S.L. Control Loops Performance Assessment: Theory and Applications[ M ]. Springer, Berlin, 1999.
  • 5T.J. Harris, F. Boudreau, J.F. MacGregor, Performance assessment of multivariable feedback controllers [ J] , Automatica. 1996, 32( 11 ) : 1505-1518.
  • 6Huang, B. , Shah, S. L K.Y. Kwok, Good, bad or optimal? Performance assessment of MIMO processes [ J], Automatica. 1997,33 (6) :1175 - 1183.
  • 7Dumont, G A, Kammer L, Allison B J. et. alControl performance monitoring: New developments and practical issues [ C ]. Barcelona, Spain,In Proceedings of the IFAC world congress, 2002.
  • 8Hoo, K. A. ,Piovoso,M. J. ,Schnelle,P. D. ,& Rowan,D. A. Process and contraller performance monitoring: Overview with industrial applications[J]. International Journal of Adaptive Control and Signal Processing, 2003,17(5) : 635 - 662.
  • 9M. Jelali, An overview of control performmance assessment technology and industrial applications [ J ], Control Engineering Practice. 2006,14 (5) :441-466.
  • 10K. R. Sales, S. A. Billings, Self-tuning control of non-linear ARMAX models[ J], International Journal of Control. 1990,51:753-769.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部