期刊文献+

具有B-D反应项的捕食系统解的稳定性 被引量:3

Stability of solutions for the predator-prey system with B-D functional responses
下载PDF
导出
摘要 讨论了一类带Bedd ington-DeAngelis反应项的捕食-食饵模型在Neumann边界条件下解的性质.利用极值原理和算子谱理论,得到在扩散系数不相同的情况下系统解的耗散性及非负常数平衡态解的稳定性.结果表明,该系统在参数满足一定的数量关系时,两物种不可能长期共存. The stability of non-constant positive solutions of predator-prey system with Beddington-DeAngelis functional responses and the second boundary condition is studied.Using maximum principle and spectral analysis of operators,firstly,the global attactor of the solution to the system in R2+ is obtained.Secondly,the stability of non-negative constant solutions is given.The research results show that two species could not co-exist for a long time when parameters of this model satisfes some condition.
出处 《纺织高校基础科学学报》 CAS 2011年第1期74-77,共4页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然专项(09JK480) 西安工业大学校长基金(XAGDXJJ0830)
关键词 捕食-食饵模型 BEDDINGTON-DEANGELIS 稳定性 非常数正平衡解 predator-prey model Beddington-DeAngelis stability non-constant positive steady-states solution
  • 相关文献

参考文献12

  • 1谢强军,吴建华,黑力军.一类反应扩散方程非负平衡解的存在性[J].数学学报(中文版),2004,47(3):467-478. 被引量:10
  • 2DANCER E N. A counterexample of competing species equations[ J]. Diff Integ Eqns,1996, 9: 239-246.
  • 3DELGABO M, LOPEZ-Gomez J, SUAREZ A. On the dyboiotic Lotka-Volterra model with diffusion and transport effects [ J ]. J Diff Eqns, 2000,160 : 175-262.
  • 4ERMENTROUT B. Strips er sports nonlinear effects in bifurcation of reaction diffudion equation on the square[ J]. Proc R Soc Lond, 1991,434(A) :413-417.
  • 5BEDDINGTON J R. Mutual interference between parasites or predators and its effects on searching efficiency [ J ]. J Anita Ecol, 1975,44 : 331-340.
  • 6De ANGELIS D L, GODSTEIN R A ,NEILL R V O. A model for trophic interaction[ J]. Ecology, 1975,56:881-892.
  • 7KAN-on Y. Existence and instability of Neumann Layer solutions for a 3-component Lotka-Volterra model with diffusion[ J ]. J Math Anal Appl,2000,243:357-372.
  • 8KAN-on Y, MIMARA M. Singular perturbation approach to a 3-component reaction-diffusion system arising in poulation dynamics[J]. SIAM J Math Analisis Applic, 1998,29:1 519-1 536.
  • 9WANG M X. Stationary patterns of strongly coupled prey-predator models[J]. J Math Anal Appl ,2004 ,292 :484-505.
  • 10DU Y H, LOU Y. Some uniqueness and exact multiplicity results for a predtor-prey model[ J]. Trans Amer Math Soc, 1997, 349:2 443-2 475.

二级参考文献19

  • 1Pao C. V., Nolinear parabolic and elliptic equations, New York: Plenum Press, 1992.
  • 2Blat J., Brown K. J., Bifurcation of steady-state solutions in predator-prey and competition systems, Proc.Roy. Soc. Edinburgh, 1984, 97A: 21-34.
  • 3Dancer E. N., Lopez-Gomez J., Ortega R., On the spectrum of some linear noncooperative elliptic systems with radial symmetry, Differential and Integral Equations, 1995, 8(3): 515-523.
  • 4Li L., Coexistence theorems of steady state for predator-prey interact systems, Trans. Amer. Math. Soc.,1988, 305: 143-166.
  • 5Wang M. X., Nonlinear parabolic equations, Beijing: Scientific Press, 1993 (in Chinese).
  • 6Brown K. J., Hess P., Positive periodic solutions of predator-prey reaction-diffusion systems, Nonlinear Anal.,1991, 16(12): 1147-1158.
  • 7Brown K. J., Nontrivial solutions of predator-prey systems with small diffusion, Nonlinear Anal., 1987, 11:685-689.
  • 8Conway E. D., Gardner R., Smoller J., Stability and bifurcation of steady state solutions for predator-prey equations, Adv. Appl. Math., 1982, 3: 288-334.
  • 9Blat J., Brown K.J., Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J.Math. Anal., 1986, 17: 1339-1353.
  • 10Du Y., Lou Y., Some uniqueness and exact multiplicity results for a predator-preymodel, Trans. Amer.Math. Soc., 1997, 349(6): 2443-2475.

共引文献9

同被引文献34

  • 1BONHOEFER S, MAY R M, SHAW G M,et al. Virus dynamics and drug therapy[J]. Proc Natl Acad Sci USA, 1997. 94:6 971-6 976.
  • 2NOWAK M A, MAY R M. Virus dynamics:mathematical principles of immunology and virology[M]. New York: Oxford University Press,2000.
  • 3JIANG Xiaowu,ZHOU Xueyong, SHI Xiangyun, et al. Analysis of stability and hopfbifureation for a delay differetial eqution model of HIV of CD4^+ T-cells [J]. Chaos,Solitions and Fractals,2008,38: 447-460.
  • 4WANG K,WEN W,PANG H,et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Physica,2007,226(2) : 197-208.
  • 5COOKE K L, Van Den DRIESSCHE P. On zeros of some transcendental equations[J]. Funkcialaj Ekvacioj, 1986,29: 77-90.
  • 6Chen J P. The qualitative analysis of two species predator-prey model with Holling type Ⅲ functional response[ J ]. Appl Math Mech, 1986,71:73-80.
  • 7Holling C S. The functional response of predators to prey density and its role in mimicry and populations [ J ]. Mem Entomol Soc Can, 1965,45:53-60.
  • 8Kan Y. Existence and instability of Neumann layer solutions for a 3-Component Lotka-Voherra model with diffusion [ J]. J Math Analysis Applic ,2000,243:357-372.
  • 9Ye Q X. Introduction to reaction-diffusion equations[ M ]. Beijing:Scientic Press, 1990( in chinese).
  • 10Kan-on Y. Singular perturbation approach to a 3-component reaction-diffusion system arising in poulation dynamics [ J ]. Siam J Math Analisis Applic, 1998,29 : 1519-1536.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部