摘要
讨论了一类带Bedd ington-DeAngelis反应项的捕食-食饵模型在Neumann边界条件下解的性质.利用极值原理和算子谱理论,得到在扩散系数不相同的情况下系统解的耗散性及非负常数平衡态解的稳定性.结果表明,该系统在参数满足一定的数量关系时,两物种不可能长期共存.
The stability of non-constant positive solutions of predator-prey system with Beddington-DeAngelis functional responses and the second boundary condition is studied.Using maximum principle and spectral analysis of operators,firstly,the global attactor of the solution to the system in R2+ is obtained.Secondly,the stability of non-negative constant solutions is given.The research results show that two species could not co-exist for a long time when parameters of this model satisfes some condition.
出处
《纺织高校基础科学学报》
CAS
2011年第1期74-77,共4页
Basic Sciences Journal of Textile Universities
基金
陕西省教育厅自然专项(09JK480)
西安工业大学校长基金(XAGDXJJ0830)