期刊文献+

基于双特征融合的动态图像分析算法

Analysis Algorithm of Dynamic Image Based on Double Feature
下载PDF
导出
摘要 为解决汽车碰撞实验过程进行测量和记录数据困难的问题,提出一种能从汽车碰撞动态图像中检测、识别和追踪标志目标的算法。该算法采用二值图像同或相关法分离出目标和背景;在找出感兴趣区域后提取相邻帧目标的坐标和纹理进行特征匹配;给出了对匹配量化值进行加权平均融合的策略,并由等错误率最小准则确定融合的最佳权系数;在融合量化值定义为相似度的基础上,通过决策阈值对相邻帧目标间的最大相似度组合进行识别;从而进一步提出了用同构映射原则来判断相邻帧目标的最佳配对。实验结果表明,该算法对相邻帧目标的配对准确率比传统单特征法提高5%,能更有效的对目标进行追踪。 In order to solve the difficult problem in car crash experiment to measure and record data, a dynamic image from a car crash detection, target identification and tracking algorithm is proposed. The algorithm uses bi- nary images related to the target and background separation in the region of interest identified targets adjacent frames after the extraction of texture coordinates and feature matching; gives quantitative values of the matching strategy of integration of the weighted average by the criterion of minimizing error rate, etc. fusing the best weights; in the integration of quantitative value is defined as the basis of similarity, by decision threshold be- tween the objectives of the adjacent frames to identify the greatest similarity combinations; which further raised with the same structure mapping principle to determine the best matching target adjacent frames. Experimental results show that the algorithm matching adjacent frames target accuracy than the traditional 5% increase in sin- gle-feature methods, to more effectively track the target.
出处 《吉林大学学报(信息科学版)》 CAS 2011年第2期110-115,共6页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划应用基础类研究基金资助项目(20090505)
关键词 汽车碰撞 目标追踪 同或相关 特征融合 同构映射 vehicle impact object tracking nclusive-OR correlation feature fusion isomorphic mapping
  • 相关文献

参考文献11

  • 1刘翔,赵晓丽,张辉.基于动态序列图像的汽车碰撞分析系统的实现[J].计算机应用与软件,2008,25(6):171-173. 被引量:5
  • 2LIU Xiang, SU Qian-min, DENG Zi-bing. The Implementation of Analysis System of Vehicle Impact Based on Dynamic Image Sequence [ C ] // Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Washington, DC, USA: IEEE Computer Society, 2008: 305-308.
  • 3HONG L, JAIN A K, PANKANTI S. Can Muhibiometrics Improve Performance [ C] //J Proc AutoID99. New York: IEEE, 2000 : 59-64.
  • 4YIN Zhao-zheng, PORIKLI F, COLLINS R T. Likelihood Map Fusion for Visual Object Tracking [ C]// Proceedings of IEEE 2008 Workshop on Application of Computer Vision. Piscataway, NJ : IEEE Computer Society, 2008 : 1-7.
  • 5雷琳,李智勇,粟毅.基于ROI特征匹配融合的图像多目标跟踪算法[J].中国图象图形学报,2008,13(3):580-585. 被引量:5
  • 6赵松,张志坚,张培仁.增强的典型相关分析及其在人脸识别特征融合中的应用[J].计算机辅助设计与图形学学报,2009,21(3):394-399. 被引量:16
  • 7ROBERT SNELICK, UMUT ULUDAG, ALAN MINK, et al. Large Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3) : 450- 455.
  • 8MEIER T, NGUN K N. Video Segmentation for Content-Based Coding [ J ]. IEEE Trans on Circuits and Systems for Video Technology, 1999, 9 (8): 1190-1203.
  • 9EVANSA N, LIU X U. A Morphological Gradient Approach to Color Edge Detection [J]. Image Processing, 2006, 15 (6) : 1454-1463.
  • 10ANIL K JAIN, ARUN ROSS, SALIL PRABHAKAR. An Introduction to Biometric Recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 ( 1 ) : 4-20.

二级参考文献37

  • 1于莉娜,胡正平,练秋生.基于改进随机Hough变换的混合圆/椭圆快速检测方法[J].电子测量与仪器学报,2004,18(2):92-97. 被引量:18
  • 2乌秀春,常怀德,王若愚.坐标变换技术用于碰撞试验中车身标志点的测量[J].公路交通科技,2005,22(4):125-128. 被引量:2
  • 3周旋,周树道,黄峰,朱福萌.大气退化图像的处理研究[J].武汉大学学报(信息科学版),2005,30(8):720-722. 被引量:3
  • 4孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 5邵文坤,黄爱民,韦庆.目标跟踪方法综述[J].影像技术,2006,18(1):17-20. 被引量:24
  • 6Turk M, Pentland A. Face recognition using eigenfaces [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Maui, 1991:586-591
  • 7Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 8Li S Z, Chu R F, Liao S C, etal. Illumination invariant face recognition using near-infrared images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 627-639
  • 9Wiskott L, Fellous J M, Kruger N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 775-779
  • 10Yang P, Shan S G, Gao W. Face recognition using Ada-Boosted Gabor features [C] //Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, 2004:356-361

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部