期刊文献+

利用蚁群聚类检测应用层DDoS攻击的方法 被引量:2

One method for application layer DDoS detection using ant clustering
下载PDF
导出
摘要 提出了一种利用蚁群聚类检测应用层分布式拒绝服务攻击的方法,根据合法用户和攻击用户在浏览行为上的差异,从合法用户的Web日志中提取用户会话并计算不同会话间的相似度,运用一种蚁群聚类算法自适应地建立检测模型,利用该模型对待检测会话进行攻击识别。实验结果表明该方法能够有效地检测出攻击行为,并具有较好的适应性。 A novel method using ant clustering to detect application layer Distributed Denial of Service(DDoS) attacks is presented.According to the difference between normal users’browsing patterns and abnormal ones,user sessions are extract- ed from the web logs of normal users and similarities between different sessions are calculated,an improved ant clustering algorithm is employed to generate an adaptive detecting model.This model can be used to detect whether the undetermined sessions are DDoS attacks or not.The experiment results show that this method can detect attacks effectively and has a good performance in adaptability
出处 《计算机工程与应用》 CSCD 北大核心 2011年第14期99-102,共4页 Computer Engineering and Applications
基金 国家自然科学基金 No.NSFC90718032~~
关键词 应用层拒绝服务攻击 浏览行为 蚁群聚类算法 异常检测 application layer denial of service attack browsing behavior ant clustering algorithm abnormity detection
  • 相关文献

参考文献13

二级参考文献54

共引文献201

同被引文献22

  • 1Ranjan S, Swaminathan R, Uysal M, et al. DIikshield: DI)oS- resilient scheduling to counter application layer attacks [J]. IEEE/ ACMTransactions on Networking, 2009, 17 (1): 26-39.
  • 2Xie Y, Yu S Z. A large-scale hidden semi-Markov model for anomaly detection on user browsing behaviors [J]. IEEE/ ACM Transactions on Networking, 2009, 17 (1): 54-65.
  • 3Yu J, Li Z, Chen H, et al. A detection and offense mecha- nism to defend against application layer DDoS attacks [C] //Third International Conference on Networking and Services. IEEE, 2007: 54-54.
  • 4CHEN Y, KU W-S, SAKAI K, et al. A novel DDoS attack defending framework with minimized bilateral damages [C] // Proceedings of the 7th IEEE Conference on Consumer Commu- nications and Networking Conference. Piscataway: IEEE, 2010: 1-5.
  • 5A1-Hammadi Y, Aickelin U, Greensmith J. DCA for bot de- tection [C] //IEEE Congress on Evolutionary Computation, 2008: 1807-1816.
  • 6Greensmith J. The dendritic cell algorithm [D]. Notting- ham: School of Computer Science, University of Notting- ham, 2007.
  • 7Greensrnith J, Aickelin U. Dendritic cells for SYN scan detec- tion [C] //Proceedings of the Genetic and Evolutionary Com- putation Conference, 2007: 49-56.
  • 8Twycross J. Integrated innate and adaptive artificial immune systems applied to process anomaly detection [D]. Notting- ham: University of Nottingham, 2007.
  • 9Greensmith J, Aickelin U, Tedeseo G. Information fusion for anomaly detection with the dendritic cell algorithm [J]. Information Fusion, 2010, 11 (1): 21-34.
  • 10陈岳兵,冯超,张权,唐朝京.树突状细胞算法原理及其应用[J].计算机工程,2010,36(8):173-176. 被引量:12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部