期刊文献+

SVM在非线性网络流量预测中的应用研究 被引量:9

Study on Nonlinear Network Traffic Prediction Base on Support Vector Machines
下载PDF
导出
摘要 网络流量是一种高度自相关、非线性时间序列数据,传统预测方法都是基于线性模型,无法反映网络流量的非线性变化规很,导致预测精度不高。为了提高网络流量的预测精度,在分析网络流量特征的基础上,提出一种基于相空间重构的支持向量机网络流量预测模型。首先利用相空间重构对网络流量原始数据进行重构,捕捉原始数据的多样性,然后将重构的数据利用非线性预测性能优异的支持向量对其进行学习和训练,建立网络流量的最优预测模型。最后以具体的网络流量数据对该模型进行了仿真,仿真结果表明,支持向量机模型比其它网络流量预测模型有较高的预测精度,因此支持向量机模型对于网络流量非线性问题的预测,具有较高的泛化能力和预测精度。 Network traffic is a time series data of highly autocorrelation,nonlinear.However,traditional forecasting methods are based on linear models which can not reflect the non-linear changes in network traffic,and the forecast precision is not high.In order to improve the forecast accuracy of network traffic,based on the analysis of network traffic characteristics,a support vector machine network traffic prediction model is proposed based on re-analysis of phase space.In this model,phase space reconstruction of the network traffic is used to reconstruct the original data and capture the diversity from the raw data,and then the reconstructed data are trained using nonlinear prediction performance of support vector to build optimal network flow forecasting model.The specific network traffic data are used carry out the simulation experiments,and the simulation results show that the support vector machine model has higher prediction accuracy than other network traffic prediction model,So this model can deal with the problems of nonlinear network traffic prediction with higher generalization ability and prediction accuracy.
作者 林楠 李翠霞
出处 《计算机仿真》 CSCD 北大核心 2011年第5期159-162,共4页 Computer Simulation
关键词 网络流量 支持向量机 时间序列 预测 Traffic prediction Support vector machine(SVM) Time serie Prediction
  • 相关文献

参考文献7

二级参考文献14

  • 1薛飞.自相似网络业务的建模分析与性能评价(博士论文)[M].天津:天津大学,1998,6..
  • 2王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992..
  • 3杜金观 项静怡 等.时间序列分析--建模与预报[M].合肥:安徽教育出版社,1991.79-98.
  • 4Qi Wenya,Proc IEEE ICC’97,1997年,1422页
  • 5KHOTANZAD A, SADEK N. Multi-scale high-speed network traffic prediction using combination of neural networks[ J]. Proceedings of the International Joint Conference on Neural Networks, 2003, (2):1071 - 1075.
  • 6SADEK N, KHOTANZAD A. Dynamic Bandwidth Allocation Using A Two-Stage Fuzzy Neural Network Based Traffic Predictor[ A]. International Joint Conference on Neural Networks, LJCNN'04[ C],Budapest, Hungary, 2004.
  • 7CHEN BS, PENG SC, WANG KC. Traffic modeling, prediction and congestion control for high-speed networks: A Fuzzy AR Approch[J]. IEEE Trans. On Fuzzy System, 2000, (8): 491 -508.
  • 8FENG HA, SHU YT. Study on Network Traffic Prediction Techniques [ A]. Wireless Communications, Networking and Mobile Computing Proceedings[ C], 2005, 2:995-998.
  • 9ZHANG QH, BENVENISTE A. Wavelet Networks[ J]. IEEE Trans on Neural Networks. 1992, 3(6).
  • 10KHOTANZAD A, ELRAGAL H, LU TL. Combination of artificial neural network forecasters for prediction of natural gas consumption[J]. IEEE Trans. Neural Networks, 2000, (11): 464 -473.

共引文献209

同被引文献97

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部