期刊文献+

鄱阳湖径流量时间序列的混沌特征分析 被引量:10

CHAOS ANALYSIS OF THE MONTHLY RUNOFF TIME SERIES IN POYANG LAKE,CHINA
原文传递
导出
摘要 流域径流受诸多因素影响,变化复杂,仅凭观测站统计数据难以发现其演变规律。以混沌理论为基础,以鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流时间序列为研究对象详细说明了求取时间序列中混沌特征数的方法。首先利用C-C方法选取相空间重构参数即时间延迟τ和嵌入维数m,在此基础上进行相空间重构,采用G-P关联积分法计算关联维数和Rosenstein小数据量法计算最大Lypanuov指数。结果表明鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流序列的饱和关联维数非整数,同时最大Lyapunov指数也为正数,这充分说明鄱阳湖入湖外洲站、李家渡站和渡峰坑站的月径流序列均具有明显的混沌特征。而且通过最大Lyapunov指数和关联维数的计算表明鄱阳湖入湖的外洲站月径流复杂程度最大,混沌特性最强,对初值的敏感性最强,李家渡站次之,渡峰坑站最小。 In the paper,the chaotic characteristics of hydrological time series from the stations which entering into Poyang lake basin were analyzed.In order to make full use of the abundant evolvement information contained in the monthly runoff series from 1955~2001 on Waizhou,Lijiadu and Dufengkeng stations,the method of C-C was used to select the lag time τ and the phase space of dimensions m.The main quantitative indices such as saturated correlation dimension and the maximum Lyapunov exponent of the monthly runoff series,which could be taken as the chaos features of the hydrology system,were calculated.The saturated correlation dimension was estimated by G-P method,and maximal Lyapuonv exponent was calculated by Rosenstein method.The calculated results indicated that monthly runoff time series of the Waizhou,Lijiadu and Dufengkeng stations were all non-integers.At the same time,the maximum Lyapunov exponents gained from the datum were all positive numbers,which sufficiently showed that the runoff system of Waizhou,Lijiadu and Dufengkeng stations had fractal characteristics and chaotic characteristics.The saturated correlation dimension and the maximum Lyapunov exponent of the monthly runoff series showed that the monthly runoff series was most complex at Waizhou station,the Lijiadu station was secondary,and the Dufenkeng station was least complex.
出处 《长江流域资源与环境》 CAS CSSCI CSCD 北大核心 2011年第5期540-545,共6页 Resources and Environment in the Yangtze Basin
基金 鄱阳湖湿地与流域研究教育部重点实验室(江西师范大学)开放基金(PK2008009)
关键词 月径流时间序列 混沌特征 关联维数 最大LYAPUNOV指数 鄱阳湖 monthly runoff time series chaos characteristics correlation dimension maximum Lyapunov exponents Poyang Lake
  • 相关文献

参考文献21

  • 1LORENZ E N. Deterministic nonperiodic flow[J]. Atmospheric Science, 1963(20): 29-34.
  • 2WILCOX B P, SEYFRIED M S, MATISON T H. Searching for chaotic dynamics in snowmelt runoff[J].Water Resources Research, 1991, 27 (6):1 005-1 010.
  • 3JAYAWARDENA A W, LAI F. Analysis and prediction of chaos in rainfall and stream flow time series[J]. Journal of Hydrology, 1994, 153:23-52.
  • 4PASTERNACK G B. Does the river run wild? Assessing chaos in hydrological systems[J]. Advances in Water Resources, 1999, 23:253-260.
  • 5SIVAKUMAR B, BERNDTSSON R, OLSSON J, et al. Evidence of chaos in the rainfall-runoff process[J]. Hydrological Sciences, 2001, 46 (1):131-145.
  • 6ELSHORBAGY A,SIMONOVIC S P,PANU U S. Estimation of missing streamflow data using principles of chaos theory [J].Journal of Hydrology, 2002, 255 : 125- 133.
  • 7ISLAM M N, SIVAKUMAR B. Characterization and prediction of runoff dynamics: A nonlinear dynamical view[J]. Advances in Water Resources, 2002, 25 : 179 - 190.
  • 8BORDIGNON S, LISI F. Nonlinear analysis and prediction of river flow time series[J]. Environmetries, 2000, 11:463 -477.
  • 9JAYAWARDENA A W, LI W K, XU P. Neighborhood selection for local modeling and prediction of hydrological time series[J]. Journal of Hydrology, 2002, 258: 40-57.
  • 10SIVAKUMAR B, PERSSON M, BERNDTSSON R, et al. Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? [J]. Water Resources Research, 2002, 38 (2): 1-8.

二级参考文献68

共引文献168

同被引文献99

引证文献10

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部