期刊文献+

基于SVR和DCT的数字图像水印算法 被引量:3

Watermarking algorithm for digital images based on SVR and DCT
下载PDF
导出
摘要 针对彩色图像,提出了一种利用支持向量回归机(support vector regression,SVR)将水印信息嵌入到图像亮度分量的离散余弦变换(discrete cosine transform,DCT)域中的算法。主要思想是应用彩色图像的YCbCr彩色空间,将亮度分量分块后做离散余弦变换,在DCT块中选择中频系数,利用SVR很好的学习和泛化能力,建立中频系数与其邻域系数之间的关系模型,然后根据中频系数和SVR模型预测输出值,调整中频系数嵌入水印。提取水印时重新训练SVR模型,但不需要原始载体图像,实现了水印的盲检测。实验结果表明,该算法具有良好的不可感知性,对色度变化、低通滤波、模糊、锐化、亮度、对比度增强、添加噪声以及几何变换等攻击均具有较强的鲁棒性,尤其对JPEG压缩具有很强的抵抗能力。 A novel algorithm embedded watermark information into the discrete cosine transform(DCT) domain of the brightness component of the color image is proposed by means of support vector regression (SVR).Using the YCbCr color space of the color image,the brightness component is divided into blocks and each block is done discrete cosine transform.The intermediate frequency coefficient is chosen in the domain and the relation model between the coefficient and its neighborhood is constructed by utilizing the good learning ability and generalization ability of SVR.According to the intermediate coefficient and output predicted by the SVR model,the watermark is embedded by adjusting the coefficient.Furthermore,the SVR model is reconstructed during the watermark extraction.The algorithm proposed is a blind detection due to the process of extracting watermark without the original color image.In addition,the experimental results further demonstrate that this algorithm has the good imperceptibility and the strong robustness for chrominance transformation, lowpass filtering,blurring,sharpening,brightness and contrast enhancement,noise addition and geometric transformation,especially for JPEG compression.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期1187-1190,1196,共5页 Systems Engineering and Electronics
基金 黑龙江省科技厅科技攻关项目(GZ06A102)资助课题
关键词 数字水印 支持向量回归机 离散余弦变换 盲检测 digital watermarking support vector regression(SVR) discrete cosine transform(DCT) blind detection
  • 相关文献

参考文献15

  • 1Cox I J, Miller M L. The first 50 years of electronic watermarking[J]. Journal on Applied Signal Processing, 2002(1) : 126 - 132.
  • 2Zhao Y T, Ma Y F, Li Z Q. A robust chaos-based DCT domain watermarking algorithm[C]// International Conference on Computer Science and Software Engineering, 2008:935- 938.
  • 3Fan Kefeng,Wang Meihua,Mo Wei,Zhao Xinhua.Novel copyright protection scheme for digital content[J].Journal of Systems Engineering and Electronics,2006,17(2):423-429. 被引量:3
  • 4Agreste S, Andaloro G. A new approach to pre-processing digital image for wavelet-based watermark[J]. Journal of Computational and Applied Mathernatics ,2008,221(2) 274 - 283.
  • 5Low C Y, Teoh A B J, Tee C, Supportvector machines (SVM)- based biometric watermarking for offline handwritten signature[C]// 3rd IEEE Conference on Industrial Electronics and Application, 2008.2095 - 5:100.
  • 6Lakshmi D, Ganesh R, Marni S R, et al. SVM based effective watermarking scheme for embedding binary logo and audio signals in images[C]// IEEERegion 10 Conference of TENCON , 2008. 1 - 5.
  • 7Wang X Y, Yang H Y, Cui C Y. An SVM based robust digital image watermarking against desynchronization attacks[J].Signal Processing ,2008,88(9)2193 - 2205.
  • 8Li C H, Lu Z D, Zhou K. An image watermarking technique based on support vector regression[C]// IEEE International Symposium on Communication and Information Technology, 2005:183 - 186.
  • 9李三平,张毓森,尹康银.基于支持向量机的小波域图像水印算法[J].系统工程与电子技术,2008,30(2):354-357. 被引量:14
  • 10Lu X L, Bian H Y,Bo Y, et al. Color image watermarking scheme based on support vector regression[C]// International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009 : 144 - 147.

二级参考文献8

  • 1Davis K J, Najarian K. Maximizing strength of digital watermarks using neural networks. [C]//Proceedings of the International Joint Conference on Neural networks, 2001, 4; 2893 -2898.
  • 2Picard J, Robert A. On the pubic key watermarking issue[C]// Proceedings of SPIE, 2001,4314 : 290 - 299.
  • 3Lou D Ch, Liu J L, Hu M Ch. Adaptive digital watermarking using neural network technique[J]. Proceedings of the IEEE , 2003,37:(10)325 - 332.
  • 4Yu P T, Tsai H H, Lin J S. Digital watermarking based on neural networks for color images[J]. Signal Processing,2001,81 ; 663 - 671.
  • 5Shen Rui-min, Fu Yong-gang, Lu Hong-tao. A novel image watermarking scheme based on support vector regression[J]. The Journal of Systems and Software, 2005,78 : 1 - 8.
  • 6Vapnik V N. The natural of statistical learning theory[M]. New York : Springer-Verlag , 2000.
  • 7Buccigrossi R, Simoncelli E. Image compression via joint statistical characterization in the wavelet domain[J]. IEEE Trans. on Image Processing, 1999,8(12) : 1688 - 1701.
  • 8刘琚,孙建德,张新刚.基于ICA的数字水印的方法[J].电子学报,2004,32(4):657-660. 被引量:16

共引文献15

同被引文献35

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部