期刊文献+

基于动态规划的微弱信号线谱增强研究 被引量:3

Line spectrum enhancements using dynamical programming process for weak signals
下载PDF
导出
摘要 对低信噪比微弱运动目标的线谱轨迹检测问题,提出了基于动态规划的线谱增强方法。这里将信号线谱增强问题转化为一个多阶段决策的优化问题。首先建立包含运动目标频谱状态变化的系统状态方程,其次依据广义似然比和贝叶斯原理计算递归形式的状态转移得分泛函,利用最小贝叶斯风险准则和虚警指标判断目标数得到对应线谱轨迹。算法利用单一优化过程完成数据互联和微弱运动目标线谱轨迹探测,具有增强处理非高斯噪声的能力,并能有效减少计算量;通过仿真和海试数据验证,表明所建模型合理,理论分析正确。 A line spectrum enhancement method is provided to improve 2D lofargram feature by dynamic programming (DP). The problem of line spectrum enhancement can be regarded as being the solution of a multi-stage optimization procedure. First, the system state equation including Doppler frequency shift is created. Then, the score functional based on the Log-likelihood ratio (LLR) and Bayes principle is obtained. At last, target frequency shift trace is shown by analyzing the max-value of the score functional. The DP algorithm has the property of reducing computational requirements, and target detection and tracking are combined into a single optimization procedure, and can deal with the non Gaussian noise problem. The simulation and sea trial results indicate that 2D lofargram line spectrum feature in low signal-to-noise ratio (SNR) can be improved by the dynamic programming process.
出处 《应用声学》 CSCD 北大核心 2011年第3期193-201,共9页 Journal of Applied Acoustics
基金 国防装备科研计划项目(4010503010103)资助
关键词 动态规划 线谱增强 Dynamical programming process, Line spectrum enhancement
  • 相关文献

参考文献10

二级参考文献28

  • 1Boutilier C, Dean T, Hanks S. Decision-Theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 1999,11 : 1-94.
  • 2Hansen EA, Zilberstein S. LAO^*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 2001,129(1-2): 35-62.
  • 3Bonet B, Geffner H. Faster heuristic search algorithms for planning with uncertainty and full feedback. In: Proc. of the 18th Int'l Joint Conf. on Artificial Intelligence. Acapulco: Morgan Kaufmann Publishers, 2003. 1233-1238.
  • 4Dean T, Kaelbling LP, Kirman J, Nicholson A. Planning under time constraints in stochastic domains. Artificial Intelligence, 1995, 76(1-2):35-74.
  • 5Ferguson D, Stentz A. 2004. Focused dynamic programming: Extensive comparative results, Technical Report, CMU-RI-TR-04-13, Pittsburgh: Robotics Institute, Carnegie Mellon University, 2004.
  • 6Barto AG, Bradtke SJ, Singh SP. Learning to act using real-time dynamic programming. Artificial Intelligence, 1995,72(1-2): 81-138.
  • 7Pemberton JC, Korf RE. Incremental search algorithms for real-time decision making. In: Proc. of the 2nd Artificial Intelligence Planning Systems Conf. 1994. 140-145.
  • 8Bonet B, Geffner H. Labeled RTDP: Improving the convergence of real-time dynamic programming. In: Giunchiglia E, Muscettola N, Nau D, eds. Proc. of the ICAPS 2003. AAAI Press, 2003. 12-21.
  • 9McMahan HB, Likhachev M, Gordon GJ. Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees. In: Proc. of the 22nd Int'l Conf. on Machine learning. 2005.
  • 10Smith T, Simmons R. Focused real-time dynamic programming for MDPs: Squeezing More Out of a Heuristic. In: Proc. of the 21 st AAAI Conf. on Artificial Intelligence. AAAI Press, 2006.

共引文献60

同被引文献33

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部