期刊文献+

基于人工神经网络的建筑施工安全评价 被引量:12

Artificial Neural Network-Based Safety Evaluation for Construction Site
下载PDF
导出
摘要 建筑施工现场的安全评价是一项复杂的系统工程。目前安全评价技术在建筑业的运用并不成熟,我国大多数建筑施工企业的安全管理只局限于对施工现场的检查和整改工作,而对整体安全性缺乏分析和有效监控。综合目前的安全评价技术,结合建筑施工的特点,确立建筑施工现场安全评价指标体系,并运用管理理论中的层次分析法(AHP)和模糊综合评价方法(Fuzzy),提出了适合建筑施工现场的人工神经网络(ANN)安全评价模型。详细论述了建筑施工安全评价方案以及具体实现的步骤,在结合AHP与Fuzzy综合评价法的基础上利用ANN进行训练与修正历史数据,为全面评价建筑施工安全状况提供了新的思路与方法。 Safety evaluation for construction site is a challenge problem.The technique for safety assessment in the construction industry is not well-developed.The safety management of most China construction companies concerns only construction site inspections and reforming.It lacks techniques for overall safety analysis and effective monitoring.With the characteristics of building construction considered,a safety evaluation index system is developed for building construction site by integrating the existing safety assessment techniques.With this index system,an artificial neural network(ANN)-based safety evaluation model is presented by combining analytical hierarchical process(AHP) and fuzzy theory.It is a new way for construction safety assessment.A case problem is used to show the detailed procedure for the application of the proposed method.
出处 《工业工程》 北大核心 2011年第2期75-79,共5页 Industrial Engineering Journal
关键词 人工神经网络 层次分析法 模糊综合评价 安全评价 建筑施工现场 artificial neural network(ANN) analytical hierarchical process(AHP) fuzzy theory safety assessment the situation of construction
  • 相关文献

参考文献10

二级参考文献39

共引文献1332

同被引文献91

  • 1陈国君.概论建筑工程施工现场安全管理的现状及措施[J].城市建筑,2013,10(16):86-86. 被引量:11
  • 2韩利,梅强,陆玉梅,季敏.AHP-模糊综合评价方法的分析与研究[J].中国安全科学学报,2004,14(7):86-89. 被引量:472
  • 3李炯,雷虎民,冯刚.基于神经网络-模糊推理的目标识别融合研究[J].空军工程大学学报(自然科学版),2006,7(6):36-39. 被引量:5
  • 4建设部建筑管理司.建筑施工安全检查评分标准实施指南[M].北京:中国建筑工业出版社,2001.
  • 5Koriem S M. A fuzzy petri net tool for modeling and verification of knowledge based systems [J]. The Computer Journal, 2000, 43(3): 206-223.
  • 6Ren Jia-dong, Huang Hui-yu, Bao Jie. The research on an algorithm for special two-hidden-layer artificial neural networks[J]. IEEE, 2003(2): 1 127-1 131.
  • 7Sabid, Fnaiech F, Najin M. A fast feed forward training algorithm using a modified form of the standard back propagation algorithm [J]. IEEE Trans Neural Networks, 2001, 12(3): 424-430.
  • 8Li H, Chan G, Huang T, et al. Chirp-spread-spectrum-based real time location system for construction safety management: A case study [J] . Automation in Construction, 2015 (55): 58-65.
  • 9Wan W, Yu J Q, Zhao J P. The Research of Highway Construc- tion Safety Management Based on Fuzzy Evaluation [ J ]. Ap- plied Mechanics & Materials, 2015 (737) : 446-451.
  • 10宫凤强,李夕兵,董陇军,刘希灵.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,2008,27(2):323-330. 被引量:191

引证文献12

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部