摘要
文章研究具有反馈的启动-关闭型GeomX/G/1(MAV)排队模型,给出了系统稳态队长和等待时间的母函数及其它们的随机分解结果,并分析系统的忙期,讨论了特例,并推导出一些结论.
This article discusses the GeomX/G/1(MAV)queue with feedback set-up and close-down times.We derive the probability generating function(PGF) of the steady-state queue length immediately after a service completion by the embedded Markov chain and the $PGF$ of the queue length immediately after an arbitrary slot boundary.The busy period of the system is discussed and some exception explored,with some conclusion reached.
出处
《重庆三峡学院学报》
2011年第3期35-40,共6页
Journal of Chongqing Three Gorges University
关键词
伯努利反馈
MAV-多级适应性休假
批量到达
启动-关闭
随机分解
离散时间排队
Bernouli feedback
MAV-multiple adaptive vacations
bulk arrive
set-up times
close-down times
stochastic decomposition
discrete time queue