期刊文献+

PLGA与大鼠嗅鞘细胞的生物相容性研究 被引量:3

Biocompatibility of PLGA with Olfactory Ensheathing Cells in Rat
下载PDF
导出
摘要 目的观察聚乳酸-乙醇酸聚合物[Poly(DL-lactic-co-glycolic acid),PLGA](LA∶GA=75∶25)与大鼠嗅鞘细胞的生物相容性。方法将分离提纯的大鼠嗅鞘细胞接种于PLGA膜上,对照组以相同的细胞接种于多聚赖氨酸包被的圆玻片上。使用倒置显微镜、扫描电镜观察细胞的黏附和生长情况,并采用MTT法及荧光染色后电子图像统计分析检测支架对细胞的毒性。结果嗅鞘细胞接种于PLGA膜上后良好生长,S-100阳性细胞计数、胞体面积和细胞周长与对照组无显著差异(P>0.05)。结论 PLGA聚合物与嗅鞘细胞生物相容性良好,有望用于脊髓损伤修复的组织工程研究。 Objective To explore the biocompatibility of Poly(DL-lactic-co-glycolic acid)(PLGA)(LA∶GA=75∶25) with olfactory ensheathing cells(OECs) in rat.Methods The purified OECs were seeded on the PLGA membrane(PLGA group) and on the columns coated Poly-L-Lysine(control group).The adhesion and viability of OECs were observed by inverted microscope and scanning electron microscopy.MTT method and the computer image statistical software were used to determinate the survival and proliferation of OECs.Results OECs grew well on PLGA membrane.There were no significant differences in the activity of OECs.The number of S-100 positive cells,the area of the cell bodies and the perimeter of the cell between two groups(P0.05).Conclusion The PLGA biomaterial has good biocompatibility with rat OECs.It could be an ideal tissue engineered scaffold material in the repair of spinal cord injury.
出处 《组织工程与重建外科杂志》 2011年第2期80-84,共5页 Journal of Tissue Engineering and Reconstructive Surgery
基金 江苏省"医学重点人才"资助项目(RC2007027) 南通市社会发展科技计划项目(S2009014)
关键词 嗅鞘细胞 聚乳酸-乙醇酸聚合物 生物相容性 脊髓损伤 Olfactory ensheathing cells Poly(DL-lactic-co-glycolic acid) Biocompatibility Spinal cord injury
  • 相关文献

参考文献13

  • 1Di Toro R, Betti V, Spampinato S. Bioeompatibility and integrin- mediated adhesion of human osteoblasts to poly(DL-lactide-co- glycolide) copolymers [J]. Eur J Pharm Sci,2004,21(2-3):161-169.
  • 2Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration [J]. Adv Drug Deliver Rev,2008,60(2):263-276.
  • 3Franssen EH, de Bree FM, Verhaagen J. Olfactory ensheathing glia: their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the itliured spinal cord [J]. Brain Res Rev,2007,56(1):236-258.
  • 4Guest JD, Herrera L, Margitich I, et al. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection [J]. Exp Neurol,2008,212(2) :261-274.
  • 5Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy[J]. Front Biosci,2008,13:806-821.
  • 6Teng YD, Lavik EB, Qu x, et al. Functional recovery following traumalic spinal cord injury mediated by a unique polymer scaffold seeded with neural stern cells [J]. Proc Natl Acad Sei USA,2002, 99(5):3024-3029.
  • 7Novikova LN, Kellerth JO, Novikov LN. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury [J]. Curr Opin Neurol,2003,16(6):711-715.
  • 8Krych AJ, Rooney GE, Chen B, et al. Relationship between scaffold channel diameter and number of regenerating axons in the tran- sected rat spinal cord [J]. Acta Biomaterialia,2009,5(7):2551-2559.
  • 9Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior [J]. Biomaterials,2003,24(13): 2267-2275.
  • 10Qiu LY, Zhu KJ. Novel biodegradable blends of poly [bis(glycineethyl ester) phosphazene] and polyesters or polyanhydrides: compatibility and biodegradable characteristics [J]. Polym Int,2000,49(11):1283- 1289.

同被引文献45

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部