期刊文献+

基于视觉传感器的自主车辆地面自动辨识技术研究 被引量:1

Study on Ground Automatic Identification Technology for Intelligent Vehicle Based on Vision Sensor
下载PDF
导出
摘要 该自主车辆地面自动辨识技术是以Leobot-Edu自主车辆作为试验载体,并应用DH-HV2003 UC-T视觉传感器对常见的5种行车路面(石子路面、水泥路面、土壤路面、草地路面、砖地路面)进行图像信息的采集,应用Matlab图像处理模块对其依次进行压缩编码、复原重建、平滑、锐化、增强、特征提取等相关处理后,再应用Matlab BP神经网络模块进行模式识别。通过对模式识别结果分析可知,网络训练目标的函数误差为20%,该系统路面识别率达到预定要求,可以在智能车辆或移动机器人等相关领域普及使用。 The ground automatic identification technology for intelligent vehicle is taking Leobot-Edu autonomous vehicle as a test vector and using DH-HV2003UC-T vision sensor to collect image information of five common lane roads(cobbled road, concrete road, dirt road, grass road, tile road), then using MATLAB image processing module to perform coding com- pression, recovery reconstruction, smoothing, sharpening, enhancement, feature extraction and other related processing, then using MATLAB BP neural network module to carry on pattern recognition. Through analyzing the pattern recognition result, it shows that the objective error is 20%, the road recognition rate has reached the intended requirement in the system, and it can be universally applied in the smart vehicle or robots and other related fields.
出处 《现代电子技术》 2011年第10期8-11,16,共5页 Modern Electronics Technique
基金 河北省自然科学基金资助项目(E2008000098)
关键词 自主车辆 视觉传感器 图像处理 模式识别 intelligent vehicle vision sensor image processing pattern recognition
  • 相关文献

参考文献8

二级参考文献33

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2KennethRCastleman 朱志刚译.数字图象处理[M].北京:电子工业出版社,1998.473-483.
  • 3Charles M, Shoemaker Jonathan A, The DemoⅡ UGV Program: A Testbed for Autonomous Navigation Research [C], Gaithersburg, MD: Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference, 1998:644-651.
  • 4Vander W, Groen F, Stereo Based Navigation in Unstructured Environments [C]. Hungary: IEEE Instrumentation and Measurement Technology Conference, 2001:2038-2042.
  • 5Hariyama M, Takeuchi T, Kameyama M. VLSI Processor for Reliable Stereo Matching Based on Adaptive Window - Size Selection [C], Korean,, Proceedings of IEEE International Conference on Robotics and Automation. 2001,, 1168-1173.
  • 6She A C. Segmentation of Road Scenes Using Color and Fractal-Based Texture Classification [C], Austin:Proceedings of IEEE International Conference on Image Processing, Texas, 11, 1994- 1026- 1030.
  • 7Crisman J , Thorpe C, Color Vision for Road Following [J], SPIE Mobile Robots III, 1988, 1007:175-184.
  • 8Crisman J , Thorpe C, A Color Vision System that Tracks Roads and Intersections [J], IEEE Trans, onRobotics and Automation, 1993, 7:49-58.
  • 9Ohta Y. Color Information for region segmentation [J]. Computer Graphics and Image Processing, 1980, 13:222-241.
  • 10Kuan D,IEEE Trans Pattern Anal Mach Intell,1988年,10卷,5期,648页

共引文献107

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部