期刊文献+

An equivalence canonical form of a matrix triplet over an arbitrary division ring with applications 被引量:4

An equivalence canonical form of a matrix triplet over an arbitrary division ring with applications
原文传递
导出
摘要 We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images. We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.
出处 《Science China Mathematics》 SCIE 2011年第5期907-924,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (GrantNo. 60672160) the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093108110001) the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (Grant No. 09YZ13) the Netherlands Organization for Scientific Research (NWO) Singapore MoE Tier 1 Research Grant RG60/07 Shanghai Leading Academic Discipline Project (Grant No. J50101)
关键词 division ring linear matrix equation equivalence canonical form of a matrix triplet DECOMPOSITION 矩阵方程 应用程序 规范形式 等价 除环 三重分解 彩色图像 表达式
  • 相关文献

参考文献1

二级参考文献24

  • 1Wang, Q. W., Li, S. Z.: The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra. Acta Math Sinica, Chinese Serges, 47(1), 27-34 (2004).
  • 2Wang, Q. W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Alqebra Appl., 384, 43-54 (2004).
  • 3Bhimasankaram, P.: Common solutions to the linear matrix equations AX=B, CX=D, and EXF=G.Sankhya Ser. A, 38, 404-409 (1976).
  • 4Aitken, A. C.: Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939.
  • 5Datta, L., Morgera, S. D.: On the reducibility of centrosymmetric matrices-applications in engineering problems. Circuits Systems Siq. Proc., 8(1), 71-96 (1989).
  • 6Cantoni, A., Butler, P.: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl., 13, 275-288 (1976).
  • 7Weaver, J. R.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors. Amer. Math. Monthly, 92, 711-717 (1985).
  • 8Lee, A.: Centrohermitian and skew-centrohermitian matrices. Linear Algebra Appl., 29, 205-210 (1980).
  • 9Hell, R. D., Bates, R. G., Waters, S. R.: On centrohermitian matrices. SIAM J. Matrix Anal. Appl., 11(1),128-133 (1990).
  • 10Hell, R. D., Bates, R. G., Waters, S. R.: On perhermitian matrices. SIAM J. Matrix Anal. Appl., 11(2),173-179 (1990).

共引文献8

同被引文献7

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部