期刊文献+

Decomposition of formaldehyde based on gold-coated TiO2 nanoparticles

Decomposition of formaldehyde based on gold-coated TiO2 nanoparticles
下载PDF
导出
摘要 The synthesis of gold nanoparticles caped with visible light-responsible TiO2 nanoparticles. was prepared by using electrochemical Oxidation-Reduction Cycles (ORC) in 0.1 M HCI aqueous solution containing 60 mM visible light-responsible TiO2 nanoparticles. Firstly, an Au substrate was cycled in a deoxygenated aqueous solution containing 0.1 M HCI and 60 mM anatase TiO2 nanoparticles from -0.28 to +1.22 V vs Ag/AgCI at 500 mV/s with 25 scans. The durations at the cathodic and anodic vertexes are 10 and 5 s, respectively. After this process, Au-and TiO2-containing complexes were left in the solution. Then a Pt electrode immediately replaced the Au working electrode, and a cathodic overpotential of 0.6 V from the Open Circuit Potential (OCP) was applied under sonification to synthesize Au nanoparticles. Encouragingly, the prepared Au nanoparticles caped with visible light-responsible TiO2 nanoparticles are more active for the decomposition of formaldehyde than pure visible light-responsible TiO2 nanoparticles are in the same condition. After 5 days testing, the formaldehyde was decomposed ca. 35% in containing Au nanoparticles caped with visible light-responsible TiO2 nanoparticles, but the formaldehyde was decomposed only ca. 25% in containing pure visible light-responsible TiO2 nanoparticles.
出处 《Journal of Environmental Science and Engineering》 2008年第1期36-40,共5页 环境科学与工程(英文版)
关键词 FORMALDEHYDE TiO2 nanoparticles Oxidation-Reduction Cycles (ORC) 纳米TiO2 甲醛分解 下分解 镀金 TiO2纳米粒子 纳米二氧化钛 金纳米粒子 氧化还原循环
  • 相关文献

参考文献28

  • 1ZHANG J, Vukmirovic M B, Sasaki K, Nilekar A U, Mavrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. Z Am. Chem. Soc,, 2005, 127: 12480.
  • 2SUN Y, Mayers B T., XIA Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett., 2002, 2: 481.
  • 3SU C. H, WU P. L, Yeh C S. Sonochemical synthesis of well-dispersed gold nanoparticles at the ice temperature. J. Phys. Chem. B, 2003, 107: 14240.
  • 4ZENG H, LI J, WANG Z. L, L1U J. P, SUN S. Bimagnetic Core/Shell FePt/Fe3O4 nanoparticles. Nano Lett., 2004, 4:187.
  • 5Bourg M C, Badia A, Lennox R B. Gold-sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J. Phys. Chem. B, 2000, 104: 6562.
  • 6Dolgaev S I, Simakin A V, Voronov V V, Shafeev G A and Verduraz F B. Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. ScL, 2002, 186: 546.
  • 7YIN B, MA H, WANG S, CHEN S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B, 2003, 107: 8898.
  • 8QIU X. F, XU J. Z, ZHU J. M, ZHU J. J, XU S, CHEN H. Y. Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J. Mater. Res., 2003, 18:1399.
  • 9Kobayashi Y, Correa-Duarte M A, Liz-Marzan L M. Sol-gel processing of silica-coated gold nanoparticles. Langmuir, 2001, 17: 6375.
  • 10WANG T. C, Rubner M F, Rubner R E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size. Langmuir, 2002, 18: 3370.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部