期刊文献+

钼金属的脆性与强韧化技术研究进展 被引量:9

Research Progress on Brittleness of Molybdenum and the Technologies of Its Strengthening and Toughening
下载PDF
导出
摘要 分析了钼材料脆性产生的两大原因:本征脆性和间隙杂质在晶界上的富集。论述了钼金属的主要强韧化技术,包括固溶强韧化、碳化物弥散强韧化、稀土氧化物弥散强韧化、气泡强韧化、复合强韧化等的作用机制、主要合金及发展现状。系统阐述了固-固、液-固和液-液掺杂法等传统掺杂方法,扩散沉积、多步内氮化处理等新型合金化技术的工作原理、工艺要点和优缺点。传统掺杂方法不能达到理想效果的原因在于其属于物理意义上的物质混合,无法形成具有稳定成分组成的物相。 Two causes of brittleness of molybdenum are present,i.e.its intrinsic frangibility and the concentration of various impurities in the grain boundary.The main strengthening and toughening technologies of molybdenum,including solid solution strengthening and toughening,molybdenum carbides dispersion strengthening,rare earth oxides dispersion strengthening and toughening,bubble strengthening and toughening,compositing strengthening and toughening technologies,etc,are systematically discussed.And the mechanisms and some representative alloys and current level of development on these technologies are exhibited.The compositing strengthening and toughening technologies would ensure molybdenum alloys with excellent comprehensive mechanical performance.The operation principles,key processes,advantages and disadvantages of the traditional doping methods consisting of solid-solid,liquid-solid and liquid-liquid doping methods and some new alloying technologies(e.g.diffusion deposition,multi-step internal nitriding,etc) are summarized in detail.The traditional doping methods have no desired effect by virtue that those methods can only make the alloy composites physically mixed,it is unable to form some phases with stable composition.
出处 《铸造技术》 CAS 北大核心 2011年第4期554-558,共5页 Foundry Technology
基金 863计划项目(2008AA031002 2007AA03Z517)
关键词 脆性 强韧化 掺杂 Brittleness Strengthening and toughening technologies Doping Molybdenum
  • 相关文献

参考文献23

  • 1陈响明.变形钼丝再结晶过程的电镜观察[J].中国钼业,1997,21(6):53-56. 被引量:8
  • 2谭望,陈畅,汪明朴,郭明星,张真.不同因素对钼及钼合金塑脆性能影响的研究[J].材料导报,2007,21(8):80-83. 被引量:36
  • 3Krajnikov A V, Moritob F, Slyunyaev V N. Impurityinduced embrittlement of heat-affected zone in welded Mobased alloys [J]. International Journal of Refractory Metals and Hard Materials, 1997, 15: 325-339.
  • 4Kumar A, Eyrej B L. Grain boundary segregation and intergranular fracture in molybdenum[J]. Mathematical and Physical Sciences, 1980, 370(1743): 431-458.
  • 5[俄]梁基谢夫НП著.金属二元系相图手册[M].郭青蔚译.北京:化学工业出版社,2009.
  • 6Hoshika Tetsuji, Hiraoka Yutaka, Nagae Masahiro, et al. Hardness distribution of molybdenum alloys which performed carbonization treatment [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49(1):32-36.
  • 7Fumio Morito. Effect of impurities on the weldability of powder metallurgy, electron-beam melted and arc-melted molybdenum and its alloys [J]. Journal of materials science, 1989, 24:3 403-3 410.
  • 8成会朝,范景莲,卢明园,刘涛,田家敏.合金元素Ti对Mo合金性能及组织结构的影响[J].中南大学学报(自然科学版),2009,40(2):395-399. 被引量:8
  • 9范景莲,成会朝,卢明园,黄伯云,田家敏.微量合金元素Ti、Zr对Mo金性能和显微组织的影响[J].稀有金属材料与工程,2008,37(8):1471-1474. 被引量:44
  • 10Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys [J]. Metallurgical and materials transactions A, 2006, 37A(10) : 2 955-2 961.

二级参考文献52

共引文献135

同被引文献98

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部