期刊文献+

时滞依赖网络控制系统的量化控制:分段时滞法 被引量:3

Quantized control for delay-dependent networked control systems:piecewise delay method
下载PDF
导出
摘要 为了减小时滞依赖系统分析的保守性,获得较大的时滞上界,也为了减小网络中的数据传输率,本文提出了一种具有量化的网络控制系统的新的分析方法:时滞分段法.将时滞落于某一段小区间看做一种情形,针对每种不同情形利用不同的自由权矩阵,并利用矩阵函数的凸性,得到了新的时滞依赖的稳定性条件.通过求解若干组线性矩阵不等式可得时滞上界和量化状态反馈控制器增益.仿真结果说明了本文所述方法的有效性. The piecewise delay method for quantized networked control system is proposed for reducing the conservativeness in the delay-dependent analysis,raising the delay upper bound and lowering the data transmission rate in the network.The delay-falling in one small subinterval is treated as a case.For different cases we adopt different free weighting matrix,and make use of the convexity of the matrix function to derive the corresponding stability criteria.The upper bound of the delay and the gain of the quantized state feedback controller can be determined by solving several sets of linear matrix inequalities.Numerical examples demonstrate the effectiveness of the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第4期575-580,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60835001) 中国高等教育博士专项研究基金资助项目(20090092120027) 江苏省高校自然科学基金资助项目(10KJB510009)
关键词 时滞依赖 分段分析法 矩阵函数凸性 delay-dependent piecewise analysis method convexity of the matrix function
  • 相关文献

参考文献11

  • 1ZHANG W, BRANICKY M S, PHILLIPS S M. Stability of networked control systems[J]. IEEE Control System Magazine, 2001, 21(11): 84 - 99.
  • 2YUE D, HAN Q L, PENG C. State feedback controller design of networked control systems[J]. IEEE Transactions on Circuits and Systems, 2004, 51(11): 640 - 644.
  • 3PENG C, TIAN Y C, TADE M O. State Feedback controller design of networked control systems with interval time-varying delay and nonlinearity[J]. International Journal of Robust and Nonlinear Control, 2008, 18(12): 1285 - 1301.
  • 4YUE D, HAN Q L. Delayed feedback control of uncertain systems with time-varying input delay[J]. Automatica, 2005, 41(2): 233 - 240.
  • 5YUE D, HAN Q L, LAM J. Network-based robust control of systems with uncertainty[J]. Automatica, 2005, 41(6): 999 - 1007.
  • 6LIU J L, HU S L, TIAN E G. A novel method of H∞ filter design for time-varying delay systems[J]. ICIC Express Letters, 2010, 4(3): 667 - 673.
  • 7YUE D, TIAN E G, ZHANG Y. A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[J]. International Journal of Robust and Nonlinear Control, 2009, 19(13): 1493 - 1518.
  • 8谢林柏,丁锋,王艳.基于辅助模型的量化控制系统辨识方法[J].控制理论与应用,2009,26(3):277-282. 被引量:4
  • 9TIAN E G, YUE D, PENG C. Quantized output feedback control for networked control systems[J]. Information Sciences, 2008, 178(12): 2734 - 2749.
  • 10NIU Y, JIA T, WANG X, et al. Output-feedback control design for NCSs subject to quantization and dropout[J]. Information Sciences, 2009, 179(21): 3804 - 3813.

二级参考文献19

  • 1BUSHNELL L G. Special section on network & control[J]. IEEE Control Systems Magazine, 2001, 21(1): 22 - 99.
  • 2LIBERZON D. Hybrid feedback stabilization of systems with quantized signals[J]. Automatica, 2003, 39(9): 1543 - 1554.
  • 3BROCKETT R W, LIBERZON D. Quantized feedback stabilization of linear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(7): 1279- 1289.
  • 4TORBJORN W. Adaptive filtering using quantized output measurements[J]. IEEE Transactions on Signal Processing, 1998, 46(12): 3423 - 3426.
  • 5WANG L Y, YIN G G, ZHANG J F. Joint identification of plant rational models and noise distribution functions using binary-valued observations[J]. Automatica, 2006, 42(4): 535 - 547.
  • 6DING F, SHI Y, CHEN T W. Auxiliary model-based least-squares identification methods for Hammerstein output-error systems[J]. Systems & Control Letters, 2007, 56(9): 373 - 380.
  • 7DING F, CHEN H B, LI M. Multi-innovation least squares identification methods based on the auxiliary model for MISO systems[J]. Applied Mathematics and Computation, 2007, 187(2): 658 - 668.
  • 8DING F, CHEN T W. Identification of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41(9): 1479 - 1489.
  • 9Nesic D, Teel A. Input-to-state stability of networked controlsystems[J]. Automatica, 2004, 40(12):2121- 2128.
  • 10Nesic D, Teel A. Input-output stability properties of networked control systems[J]. IEEE Trans Automatie Control, 2004, 49(10): 1650-1667.

共引文献13

同被引文献38

  • 1KALMAN R E. Nonlinear aspects of sampled-data control systems[C]//Proceedings of the Symposium on Nonlinear Circuit Analysis. California: Polytechnic Institute of Brooklyn, 1956, VI: 273 - 313.
  • 2BROCKETT R W, LIBERZON D. Quantized feedback stabilization of linear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(7): 1279- 1289.
  • 3FU M Y, XIE L H. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1698- 1711.
  • 4BULLO F, LIBERZON D. Quantized control via locational optimization[J]. IEEE Transactions on Automatic Control, 2006, 51(1): 2 - 13.
  • 5CERAGIOLI F, PERSIS C D. Discontinuous stabilization of nonlinear systems: Quantized and switching controls[J]. Systems & Control Letters, 2007, 56 (7/8): 461 -473.
  • 6GAO H J, CHEN T W. A new approach to quantized feedback control systems[J]. Automatica, 2008, 2(44): 534 - 542.
  • 7GAO H J, CHEN T W. H∞ estimation for uncertain systems with limited communication capacity[J]. 1EEE Transactions on Automatic Control, 2007, 52(11): 2070 - 2084.
  • 8HAN Q L, YUE D. Absolute stability of Lurie's systems with time- varying delay[J], lET Control Theory and Applications, 2007, 1(3): 854 - 859.
  • 9HAO E New conditions on absolute stability of uncertain Lurie's systems and the maximum admissible perturbed bound[J]. IMA Journal of Mathematical Control and Information, 2007, 24(3): 425 - 433.
  • 10HE Y, WU M, SHE J H, et al. Robust stability for delay Lurie's control systems with multiple nonlinearities[J]. Journal of Computational and Applied Mathematics, 2005, 176(2): 371 - 380.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部