摘要
3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.
3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.