期刊文献+

基于BP神经网络方法的热管中冷器热工性能分析 被引量:5

Performance of heat pipe intercooler based on BP neural network
下载PDF
导出
摘要 基于BP神经网络建立了热管中冷器的传热性能和阻力性能预测模型,采用基于Levenberg Marquardt的trainlm训练算法,对热管中冷器的传热性能和阻力性能进行了预测,经试验数据的验证,预测值与试验值吻合较好,传热性能网络预测最大相对误差为8.0%,平均相对误差为3.5%,阻力性能网络预测最大相对误差为13.1%,平均相对误差为5.1%,说明该预测模型能较精确地预测热管中冷器的热工性能,用于指导工程设计。最后利用该预测模型对热管中冷器的结构参数进行优化,得到最佳设计参数,为热管中冷器的开发研究与应用提供了依据。 Models for heat transfer performance and thermal resistance of heat pipe intercooler were established based on BP neural network.The heat transfer performance and thermal resistance were predicted by means of the Levenberg Marquardt training algorithm.The prediction results were in good agreement with the experimental results.For the network model of heat transfer,the maximum relative error is 8.0% and the average relative error is 3.5%.For the network model of thermal resistance,the maximum relative error is 13.1% and the average relative error is 5.1%.Thus the prediction model of the heat pipe intercooler can be used for engineering design.The structural parameters were optimized with the BP neural network model and the optimal design parameters were obtained.The study will be the foundation for the development and application of heat pipe intercooler.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第6期1593-1599,共7页 CIESC Journal
关键词 BP神经网络 热管 中冷器 预测模型 传热特性 BP neural network heat pipe intercooler prediction model heat transfer performance
  • 相关文献

参考文献18

  • 1Sen M,Yang K T.Applications of artificial neural networks and genetic algorithms in thermal engineering//The CRC Handbook of Thermal Engineering[M].Boca Ratom:CRC Press,2000:620-661.
  • 2Yang K T.Role of artificial intelligence(AI)in thermal sciences and engineering//ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference[C].2007,Paper No.HT-2007-32042:871-883.
  • 3Yang K T.Artificial neural networks(ANNs):a new paradigm for thermal science and engineering[J].ASME J.Heat Transfer,2008,130(9):1-19.
  • 4Ermis K,Erek A,Dincer I.Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J].International Journal of Heat and Mass Trarzsfer,2007,50:3163-3175.
  • 5陈彦泽,丁信伟,喻建良.重力热管振荡传热特性RBF神经网络动态建模[J].化工学报,2005,56(5):890-893. 被引量:8
  • 6周云龙,孙斌,陆军.改进BP神经网络在气液两相流流型识别中的应用[J].化工学报,2005,56(1):110-115. 被引量:32
  • 7Xie G N,Wang Q W,Zeng M,Luo L Q.Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach[J].Applied Thermal Engineering,2007,27:1096-1104.
  • 8Islamoglu Y.A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger-use of an artificial neural network model[J].Applied Thermal Engineering,2003,23(2):243-249.
  • 9lslamoglu Y,Kurt A.Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels[J].Int.J.Heat Mass Transfer,2004,47:1361-1365.
  • 10Wu Z G,Zhang J Z,Tao Y B,He Y L,Tao W Q.Application of artificial neural network method for performance prediction of a gas cooler in a CO2 heat pump[J].Int.J.Heat Mass Transfer,2008,51:5459-5464.

二级参考文献32

  • 1钱祥生.三次设计新思路 继续教育专题系列论文[J].液压气动与密封,1996,16(2):50-53. 被引量:2
  • 2范明舫.换热器最小换热面积的稳健性选型设计方法[J].中南工学院学报,1996,10(1):43-49. 被引量:4
  • 3李后强 汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.157-178.
  • 4GARCIA J, CHRISTIAN D. Correlations between charge air cooler (CAC) distortion bench tests and flexion fatigue on test specimens [C]//Vehicle Thermal Management Systems Conference and Exhibition. Toronto: SAE, 2005-01-2011.
  • 5VASILIEV L L. Heat pipes in modern heat exchangers [J]. Applied Thermal Engineering, 2005, 25(1) : 1 - 19.
  • 6NOIE S H, MAJIDEIAN G R. Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals [J]. Applied Thermal Engineering, 2000, 20(14): 1271 -1282.
  • 7YAU Y H, TUCKER A S. The performance study of a wet six-row heat-pipe heat exchanger operating in tropical buildings [J]. International Journal of Energy Research, 2003, 27(3) : 187 - 202.
  • 8MOSTAFA A A, MOUSA M M. Heat pipe heat exchanger for heat recovery in air conditioning [J]. Applied Thermal Engineering, 2007, 27(4):795- 801.
  • 9YANG Feng, YUAN Xiu-gan, LIN Gui-ping. Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas [J]. Applied Thermal Engineering, 2003, 23(3): 367- 372.
  • 10ROMESTANT C, GWENAEL B, ALAIN A, et al. Heat pipe application in thermal-engine car air conditioning [C] // Proceeding of the 13th International Heat Pipe Conference. Beijing: China Astronautic Publishing House, 2004:537 - 542.

共引文献47

同被引文献50

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部