期刊文献+

高产精氨酸的钝齿棒杆菌在高低供氧条件下的差异蛋白质组学初步研究 被引量:5

A preliminary study on differential proteomics of Corynebacterium crenatum in two oxygen supply models
下载PDF
导出
摘要 溶氧水平直接影响钝齿棒杆菌合成精氨酸产量的高低,运用双向电泳结合MALDI-TOF-MS及MS/MS质谱鉴定技术的方法对高低供氧条件下高产精氨酸的钝齿棒杆菌的胞内可溶性蛋白进行分离鉴定。结果表明,钝齿棒杆菌菌体蛋白的等电点主要分布在4-7的范围内,采用pH4-7的IPG胶条进行分离,得到了645±12个蛋白点。通过软件比对分析发现,在高低两种供氧条件下存在32个显著差异的蛋白点,成功鉴定出了其中的29个蛋白点,代表了27种差异蛋白。采用数据库检索发现这些蛋白参与不同的代谢途径,包括糖类代谢、氨基酸代谢及能量代谢等。其主要集中在HMP途径、TCA循环和尿素循环。分析结果表明,在高供氧条件下能量代谢水平提高,HMP途径的增强可明显缓解高供氧条件下的氧化压力,同时TCA和尿素循环途径活跃有利于精氨酸的合成。 Dissolved oxygen level directly affects the synthesis of arginine by Corynebacterium crenatum(C.crenatum).Proteomic approaches including two-dimensional electrophoresis(2-DE)and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS)were used to analyze differential expression of proteins in C.crenatum in different oxygen supply conditions.The results showed that most of the isoelectric points of the proteins on the 2-DE gels distributed from 4 to 7.Thirty-two different protein points were detected in the pH 4—7 gels and characterized by MALDI-TOF-MS as well as peptide mass fingerprintings.Using matrixscience database,29 protein points were identified,and they represented 27 proteins.Database research showed that the proteins performed different functions in carbohydrate metabolism,amino acid metabolism and energy metabolism.Most of the differentially expressed proteins concentrated in the pentose phosphate pathway,TCA cycle and the urea cycle.The results showed that in the high oxygen supply model,energy metabolism was significantly increased,and the oxidative stress was balanced because of the increase of pentose phosphate pathway.Meanwhile,the activation of TCA cycle and urea cycle were beneficial to the synthesis of arginine.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第6期1649-1655,共7页 CIESC Journal
基金 国家高技术研究发展计划项目(2007AA02Z207 2006AA020301) 国家重点基础研究发展计划项目(2007CB707804) 教育部新世纪优秀人才支持计划(NCET-07-0380)~~
关键词 钝齿棒杆菌 供氧差异 蛋白质组 基质辅助激光解析飞行时间质谱 Corynebacterium crenatum oxygen supply proteomic MALDI-TOF-MS
  • 相关文献

参考文献22

  • 1Cunin R,Glansdorff N,Pierard A,Stalon V.Biosynthesis and metabolism of arginine in bacteria[J].Microbiol.Rev.,1986,50(3):314-352.
  • 2Ikeda M.Amino acid production processes[J].Adv.Biochem.Eng.Bioteehnol.,2003,79:1-35.
  • 3陈雪岚,许正宏,陶文沂.钝齿棒杆菌产精氨酸关键酶分析[J].食品科学,2005,26(3):35-39. 被引量:7
  • 4许虹,窦文芳,许泓瑜,张晓梅,饶志明,许正宏.不同供氧水平对L-精氨酸分批发酵过程的影响[J].化工学报,2008,59(9):2295-2301. 被引量:8
  • 5Tsugita A,Kawaka T,Uchiha T,Sakai T,Watanabe Y,Morimasa T,Hosokawa K,Toda T.Proteome analysis of mouse brain,two-dimensional electrophoresis profiles of tissue proteins during the course of aging[J].Electrophoresis,2000,21 C9):1853-1871.
  • 6O'Farell P H.High resolution two-dimensional electrophoresis of proteins[J].Bial.Chem.,1975,250(10):4007-4021.
  • 7Bjellgvist B,Ek K,Righetti P G,Gianazza E,Gorg A,Westermeier R,Postel W.Isoelectric focusing in immobilized pH gradients:principle,methodology and someapplications[J].Biochem.Biophys.Methods,1982,6(4):317-339.
  • 8Hillenkamp F,Karas M.Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption ionization[J].Methods Enzymol,1990,193:280-295.
  • 9Mao S,Luo Y,Zhang T,Li J,Bao G,Zhu Y,Chen Z,Zhang Y,Li Y,Ma Y.Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield[J].Proteome Res.,2010,9(6):3046-3061.
  • 10Boros L G,Puigjaner J,Cascante M,Lee W N,Brandes J L,Bassilian S,Yusuf F I,Williams R D,Muscarella P,Melvin W S,Schirmer WJ.Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation[J].Cancer Res.,1997,57(19):4242-4248.

二级参考文献17

  • 1龚建华,丁久元,黄和容,陈琦.L-精氨酸发酵动力学特性的分析研究[J].生物工程学报,1993,9(1):8-15. 被引量:4
  • 2许正宏,窦文芳,王霞,陶文沂.氮源及其添加模式对钝齿棒杆菌JDN28-75合成L-精氨酸的影响[J].应用与环境生物学报,2006,12(3):381-385. 被引量:11
  • 3Tomoki A, Seiji A, Toshihide N. Process for producing L-arginine: US, 334328. 1989-08-07
  • 4Vehary S, Anitchka H. Microorganisms and method for L-arginine: US, 5034319. 2001-10-26
  • 5Takashi Utagawa. Arginine metabolism: enzymology, nutrition, and clinical significance. American Society for Nutritional Sciences, 2004, 134 : 2854-2857
  • 6Hirose Y, Shibai H. Amino acid fermentation. Biotechnol.Bioeng., 1980, 22: 111-125
  • 7GongJianhua(龚建华) DingJiuyuan(丁久元) LuZhiqiang(路志强) ChenQi(陈琦).Studies on the {ermentation of L-arginine[J].微生物学报,1988,28(3):257-264.
  • 8Xiao J, Shi Z, Gao P. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess Biosyst Eng. , 2006, 29 (2) : 109-117
  • 9Kiss R D, Stephanopoulos G. Metabolic characterization for a L-lysine producing strain by continuous cultures. Biotechnol. Bioeng., 1992, 39: 565-574
  • 10Park S M, Sinskey A J, Stephanopoulos G. Metabolic and physiological studies of Corynebacterium glutamicum mutants. Biotechnol. Bioeng., 1997, 55: 864-879

共引文献11

同被引文献47

  • 1陈雪岚,许正宏,陶文沂.钝齿棒杆菌产精氨酸关键酶分析[J].食品科学,2005,26(3):35-39. 被引量:7
  • 2陈雪岚,熊勇华,陶文沂,王正祥,许正宏.野生型与突变型钝齿棒杆菌生物合成精氨酸基因簇arg JBDFR的生物信息学比较[J].食品科学,2007,28(3):219-222. 被引量:3
  • 3王立梅,齐斌.L-乳酸应用及生产技术研究进展[J].食品科学,2007,28(10):608-612. 被引量:39
  • 4Xu H, Dou WF, Xu HY, Zhang XM, Rao ZM, Shi ZP, Xu ZH. A two-stage oxygen supply strategy for enhanced L-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochemical Engineering Journal, 2009, 43 ( 1 ) : 41-51.
  • 5Liebl W, Sinskey A J, Schleifer KH. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. Journal of Bacteriology, 1992, 174(6): 1854-1861.
  • 6Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. Journal of Molecular Microbiology and Biotechnology, 2001, 3 : 295-300.
  • 7Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H. Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Applied Microbiology and Biotechnology , 2008, 77(4) : 853-850.
  • 8Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. Journal of Bioscience and Bioengineering, 2008, 106( I ) : 51-58.
  • 9Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns B J, Seibold GM. Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Applied and Environmental Microbiology, 2010, 119 ( 1 ) : 370-374.
  • 10Pa'tek, M., Nes v vera J, Guyonvarch A, Reyes O, Leblon G. Promoters of Corynebacterium glutamicum. Journal of Biotechnology. 2003, 104( 1-3 ) : 311-323.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部