期刊文献+

基于最小化最大绝对预测误差的组合神经网络软测量建模方法 被引量:3

Soft Senor of Stacked Neural Networks Based on Minimum Maximum Absolute Prediction Error
下载PDF
导出
摘要 针对聚丙烯熔融指数软测量建模问题,提出了一种基于最小化最大绝对预测误差的组合神经网络软测量建模方法,并将该方法应用于聚丙烯熔融指数软测量研究中。通过建立多个不同结构的BP神经网络模型,并合理组合各个模型,可显著改善单一神经网络模型的泛化能力。鉴于合适的组合权重对取得良好预测性能是至关重要的,因此提出将最小化最大绝对预测误差作为控制预测精度的目标,来选择合适的组合权重。聚丙烯熔融指数软测量研究结果表明:通过与各个单一神经网络模型的预测精度比较,采用该方法建立的聚丙烯熔融指数组合神经网络软测量模型具有更佳的预测精度和鲁棒性。 To build an accurate soft-sensor model of polypropylene melt index,a new method based on minimum maximum was studied.Single neural network model generalization capability could be significantly improved by using a number of different structures of BP neural network model and reasonable stacked neural network model.Proper determination of the stacking weights was essential for good performance,so determination of appropriate weights for combining individual networks using minimum maximum absolute prediction error was proposed.The results of melt index prediction demonstrated significant improvement in model accuracy and robustness,as compared to using a number of different structures neural network model.
出处 《科技通报》 北大核心 2011年第3期403-407,共5页 Bulletin of Science and Technology
基金 国家高技术研究发展计划项目(2006AA04Z178)
关键词 聚丙烯 熔融指数 软测量 组合神经网络 最大绝对预测误差 polypropylene melt index soft sensor stacked neural networks maximum absolute prediction error
  • 相关文献

参考文献11

  • 1Shi J, Liu X G, Sun Y X. Melt index prediction by neural networks based on independent component analysis and muhi-scale analysis[J]. Neurocomputing, 2006, 70 (1-3) : 280-287.
  • 2Han I S,Han C,Chung C B. Melt index modeling with support vector machines ,partial least squares ,and artifi- cial neural networks[J]. J Appl Polym Sci,2005,95 (4): 967-974.
  • 3王旭东,邵惠鹤,罗荣富.分布式RBF神经网络及其在软测量方面的应用[J].控制理论与应用,1998,15(4):558-563. 被引量:24
  • 4Bates J M, Granger C W J. The Combination of Forecasts [J]. Operational Research Quarterly, 1969,20(4): 451- 468.
  • 5Wolpert D H. Stacked generalization [J]. Neural Networks, 1992,5 (2) :241-259.
  • 6Sridhar D V, Bartlett E B, Seagrave R C. Information theoretic approach for combining neural network process models[J]. Neural Networks, 1999,12(6) : 915-926.
  • 7Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks [J]. Neurocomputing, 1999,25(1) :93-113.
  • 8Sridhar D V,Seagrave R C,Bartlett E B. Process mod- elling using stacked neural networks[J]. AIChE J, 1996, 42(9) :2529-2539.
  • 9孙欣,王金春,何声亮.基于神经网络的过程软测量[J].自动化仪表,1996,17(9):7-10. 被引量:15
  • 10Zhang J,Morris A J,Martin E B,et al. Prediction of polymer quality in batch polymerization reactors using robust neural networks[J]. Chem Eng J, 1998,69(2): 135-143.

二级参考文献7

  • 1孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1-5. 被引量:17
  • 2王旭东,博士学位论文,1997年
  • 3罗荣富,Control Eng Pract,1995年,3卷,1期,31页
  • 4罗荣富,中国自动化学会第六届过程控制科学报告会论文集,1993年
  • 5Xu Lei,IEEE Trans Neural Netw,1993年,4卷,4期,636页
  • 6Chen S,IEEE Trans Neural Netw,1991年,2卷,2期,302页
  • 7王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-66. 被引量:68

共引文献37

同被引文献23

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部