期刊文献+

一种模糊双向最大间距准则人脸识别方法 被引量:8

Fuzzy bidirectional maximum margin criterion based face recognition
下载PDF
导出
摘要 研究提出一种模糊双向最大间距准则(fuzzy bidirectional maximum margin criterion,FBMMC)特征提取方法,并将其用于人脸识别。在FBMMC中,首先通过引入原始训练样本集的模糊隶属度矩阵,定义了面向图像的行方向模糊离散度矩阵和行方向模糊最大间距准则,进一步求得行方向最优投影矩阵;然后,对原始训练样本集中的每一个样本,采用行方向最优投影矩阵进行投影变换,从而得到行方向特征训练样本集。同样地,通过引入行方向特征训练样本集的模糊隶属度矩阵,给出了面向图像的列方向模糊离散度矩阵和列方向模糊最大间距准则的定义,进一步求得列方向最优投影矩阵。FBMMC在得到行、列两个方向的最优投影矩阵后,就可以将原始数据空间的样本数据投影到一个相对低维的特征空间,从而完成对原始样本数据的特征提取。在ORL和Yale人脸数据库上的实验结果表明,文中提出的模糊双向最大间距准则特征提取方法用于人脸识别具有较高的识别率。 This paper proposes a new method for feature extraction and recognition,namely,the fuzzy bidirectional maximum margin criterion(FBMMC).Through introducing the fuzzy membership grade matrix of the original training sample set,FBMMC defines the row directional fuzzy image scatter matrices and the row directional fuzzy image MMC,and then obtains the row directional optimal projection matrix.Subsequently,each sample in the original training sample set is transformed using the row directional optimal projection matrix,and the row directional feature training sample set can be obtained.Similarly,utilizing the fuzzy membership grade matrix of the row directional feature training sample set,FBMMC defines the formulas of the column directional fuzzy image scatter matrices and the column directional fuzzy image MMC;and then obtains the column directional optimal projection matrix.Having obtained the row and column directional optimal projection matrices,FBMMC can transform the original sample data from original high-dimensional data space to a low-dimensional feature space and complete the feature extraction of the original sample data.Experimental results on the ORL and Yale face database show that the proposed FBMMC method for face recognition has high recognition rate.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第5期1077-1082,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(No.60804026) 河南大学科研基金项目(No.2009YBZR021) 省部共建河南大学科研项目(No.SBGJ090601)资助
关键词 最大间距准则 模糊双向最大间距准则 特征提取 人脸识别 maximum margin criterion fuzzy bidirectional maximum margin criterion feature extraction face recognition
  • 相关文献

参考文献15

  • 1BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):711-720.
  • 2CHEN L F,LIAO H Y M,KO M T,et al.A new LDAbased face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713-1726.
  • 3LI H,JIANG T,ZHANG K.Efficient and robust feature extraction by maximum margin criterion[J].IEEE Transactions on Neural Networks,2006,17 (1):1157-1165.
  • 4KWAK K C,PEDRYCZ W.Face recognition using a fuzzy Fisherface classifier[J].Pattern Recngnition,2005,38(10):1717-1732.
  • 5SONG X N,ZHENG Y J,WU X J,et al.A complete fuzzy discriminant analysis approach for face recognition[J].Applied Soft Computing,2010,10:208-214.
  • 6YANG W K,WANG J G,REN M W,et al.Feature extraction using fuzzy inverse FDA[J].Neurocomputing,2009,72:3384-3390.
  • 7YANG J,ZHANG D,FRANGI A F,et al.Two-dimensional PCA:a new approach to appearance-bused face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 8YANG J,ZHANG D,XU Y,et al.Two-dimensional discriminant transform for face recognition[J].Pattern Recngnition,2005,38:1125-1129.
  • 9杜海顺,柴秀丽,汪凤泉,张帆.一种基于双向2DLDA特征融合的人脸识别方法[J].仪器仪表学报,2009,30(9):1880-1885. 被引量:11
  • 10WANG J G,YANG W K,LIN Y S,et al.Two-diroctional maximum scatter difference discriminant analysis for face recognition[J].Neurocomputing,2008,72:352-358.

二级参考文献30

  • 1周大可,杨新,彭宁嵩.改进的线性判别分析算法及其在人脸识别中的应用[J].上海交通大学学报,2005,39(4):527-530. 被引量:12
  • 2KONG Wan-zeng,ZHU Shan-an.Multi-face detection based on downsampling and modified subtractive clustering for color images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):72-78. 被引量:10
  • 3朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较[J].仪器仪表学报,2007,28(2):375-379. 被引量:30
  • 4AKARUN L, GOKBERK B, SALAH A A. 3D face recognition for biometric applications[A]. Antalya: Proceedings of the 13th European Signal Processing Conference[C], 2005: 358-362.
  • 5ZHANG B ZH, RUAN Q Q. Facial feature extraction using improved deformable templates[A]. Guilin:Proc. ICSP2006[C], 2006, 4: 16-20.
  • 6EDWARDS G J, LANITIS A, TAYLOR C J, et al. Statistical models of face images - improving specificity [J]. Image and Vision Computing, 1998 (16): 203-211.
  • 7COOTES T F, EDWARDS G J, TAYLOR C J. Active appearance models[J]. IEEE Transactions on PAMI, 2001, 23(6): 681-685.
  • 8COOTES T F, TAYLOR C J. Statistical models of appearance for medical image analysis and computer vision [A]. Washington DC:Proc. SPIE Medical Imaging [C], 2001: 236-248.
  • 9COOTES T F, EDWARDS G, TAYLOR C J. Comparing active shape models with active appearance models [A]. Nottingham: Proc. BMVC99[C], 1999: 173-182.
  • 10KURIHARA T, ANDO S. Surface orientation imager using three-phase amplitude-modulated illumination and correlation image sensor [A]. San Jose: Proc. SPIE [C], 2003: 95-102.

共引文献32

同被引文献100

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部