期刊文献+

基于室外图像的天气现象识别方法 被引量:25

Method of weather recognition based on decision-tree-based SVM
下载PDF
导出
摘要 为提高室外视频监控的准确率,实现天气现象的自动观测,提出了一种基于室外图像的天气现象识别方法,该方法通过分析天气现象对图像的影响,提取图像功率谱斜率、对比度、噪声和饱和度等特征进行训练与分类,在训练过程中根据类别之间的特征距离建立分类决策树,并为决策树上非叶子节点构造支持向量机(SVM)分类器,并在每个分类器构造过程中通过对特征赋权值实现对特征的选择。通过对WILD图像数据库和采集图像集不同天气800个样本的测试,除了对降雨的识别率较低(75%)外,对晴、阴、雾天气的识别率均高于85%。 To improve the quality of video surveillance outdoors and to automatically acquire the weather situations,a method to recognize weather situations in outdoor images is presented.It extracted such parameters as power spectrum slope,contrast,noise,saturation as features to realize the multi-classification of weather situations with Support Vector Machine(SVM).Then a decision tree was constructed in accordance with the distance between these features.The experimental results on WILD image base and our image set of eight hundred samples show that the proposed method can recognize sunny,overcast,foggy weather more than 85%,and recognize rainy weather more than 75%.
出处 《计算机应用》 CSCD 北大核心 2011年第6期1624-1627,共4页 journal of Computer Applications
关键词 室外图像 天气现象识别 功率谱斜率 支持向量机 决策树 outdoor image weather recognition power spectrum slop Support Vector Machine(SVM) decision tree
  • 相关文献

参考文献12

  • 1NARASIMHAM S G, NAYAR S K. Contrast restoration of weather degraded images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6) : 713 -724.
  • 2NARASIMHAM S G, NAYAR S K. Vision and the atmosphere[ J]. Intemational Journal of Computer Vision, 2002, 48(3) : 233 -254.
  • 3ROSER M, MOOSMANN F. Classification of weather situations on single color images [ C]// IEEE Intelligent Vehicles Symposium. Eindhoven: IEEE Computer Society Press, 2008:798 - 803.
  • 4YAN XUNSHI, LUO YUPIN, ZHENG XIAOMING. Weather recognition based on images captured by vision system in vehicle[ C]// Proceedings of the 6th International Symposium on Neural Network: Advance in Neural Networks. Berlin: Springer-Verlag, 20139:390 - 398.
  • 5SHEN LI, TAN PING. Photometric stereo and weather estimation using Internet images[ C]// IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE Computer Society Press, 2009:1850 - 1857.
  • 6LIU RENTING, LI ZHAORONG, JIA JIAYA. Image partial blur detection and classification[ C]//IEEE Conference on Computer Vision and Pattem Recognition. Anchorage: IEEE Computer Society Press, 2008:1-8.
  • 7BURTON G, MOORHEAD I. Color and spatial structure in natural scenes[ J]. Applied Optics, 1987, 26(1) : 157 - 160.
  • 8ELI P. Contrast in complex images[ J]. Journal of the Optical Society of America, 1990, 7(10) : 2032 -2040.
  • 9TAI SHENCHUAN, YANG SHIHMING. A fast method for image noise estimation using Laplacian operator and adaptive edge detection[C]// Commnications, Control and Signal Processing. St Julians: IEEE Computer Society Press, 2008:1077 - 1081.
  • 10TAKAHASHI F, ABE S. Decision-tree-based multiclass support vector machines[ C]// ICONIP 2002. Kinmen: [ s. n. ], 2002, 3: 1418 - 1422.

同被引文献176

引证文献25

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部