期刊文献+

Coordination Control of Greenhouse Environmental Factors 被引量:2

Coordination Control of Greenhouse Environmental Factors
下载PDF
导出
摘要 Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient. Optimal control of greenhouse climate is one of the key techniques in digital agriculture.Greenhouse climate,a nonlinear and uncertain system,consists of several major environmental factors such as temperature,humidity,light intensity,and CO 2 concentration.Due to the complex coupled correlations,it is a challenge to achieve coordination control of greenhouse environmental factors.This paper proposes a model-free coordination control approach for greenhouse environmental factors based on Q-learning.Coordination control policy is found through systematic interaction with the dynamic environment to achieve optimal control for greenhouse climate with the control cost constraints.In order to decrease systematic trial-and-error risk and reduce the computational complexity in Q-learning algorithm,case-based reasoning (CBR) is seamlessly incorporated into the Q-learning process.The experimental results demonstrate that this approach is practical,highly effective and efficient.
出处 《International Journal of Automation and computing》 EI 2011年第2期147-153,共7页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundationof China(No.60775014)
关键词 Q-LEARNING case-based reasoning (CBR) greenhouse environmental factors coordination control coupled correlation trial-and-error. Q-learning case-based reasoning (CBR) greenhouse environmental factors coordination control coupled correlation trial-and-error.
  • 相关文献

参考文献2

二级参考文献70

  • 1郜庆炉,薛香,段爱旺.日光温室内温度特点及其变化规律研究[J].灌溉排水学报,2003,22(6):50-53. 被引量:53
  • 2周宝龙,岳继光,萧蕴诗.基于CAN控制器的单片机农业温室控制系统的设计[J].测控技术,2000,19(12):19-21. 被引量:20
  • 3李永欣,李保明,李真,丁涛.Venlo型温室夏季自然通风降温的CFD数值模拟[J].中国农业大学学报,2004,9(6):44-48. 被引量:39
  • 4任雪玲 徐立鸿.温室环境控制中时延问题的新型控制算法[J].厦门大学学报,2001,40(1):192-195.
  • 5Bambang Marhaenanto and Gajendra Singh. Development of a Computer-Based Greenhouse Environment Controller. March, 2002,13,136-146.
  • 6Marsh, L. S. et al. Economics of Greenhouses heating with a Mine Air-Assisted Heat Pump.Trans.of ASAE, 1994,37(6): 1959-1968.
  • 7G. F. Sheard. Journal of Sci.Fd.Agfi.1975,26:1071-1076.
  • 8J. M. Aaslyng, J. B. Lurid, N.Ehler, E.Rosenqvist. IntelliGrow: a greenhouse component-based climate control system [J]. Environ- mental Modelling & Software 18 (2003) 657-666.
  • 9Udink ten U_.ate, A.J., Challa, H.. On optimal computer control of the crop growth system. Agile. Meteorol. 1984,28:217-229.
  • 10Hansen, J. M., Ehler, N., Karlsen, P., Hogh-Schmidt, K., Rosenqvist, E.. A computer controlled chamber system designed for greenhouse microclimatic modeling and control. Acta Horticulturae, 1996a, 440: 310-315.

共引文献52

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部