期刊文献+

基于最大熵的机动目标状态融合估计 被引量:1

Approach to State Fusion Estimation of Moving Targets Based on Maximum Entropy Principle
下载PDF
导出
摘要 基于最大熵准则实现机动目标状态融合估计,针对聚类算法中隶属度计算与聚类中心耦合、类中心初始化不当的引入误差问题,提出向量解析方法解耦求解隶属度。仿真实验表明,该方法能避免聚类中心难选择问题,具有良好的估计精度。 A new approach to the state fusion estimation of moving targets based on the maximum entropy principle is described. Targeting at the fact that the membership computation is coupled with the cluster centre in the cluster algorithm and the errors caused by improper cluster centre initialization, a vector analytic method is proposed to solve the membership. Simulation results indicate that the method avoids embarrassment: in cluster centre selection and has a good estimation accuracy.
出处 《指挥信息系统与技术》 2011年第2期19-22,70,共5页 Command Information System and Technology
关键词 数据融合 最大熵 模糊聚类 data fusion maximum entropy fuzzy clustering
  • 相关文献

参考文献6

  • 1韩峰,杨万海,袁晓光.基于相关性函数和模糊贴近度的多传感器数据融合[J].弹箭与制导学报,2009,29(4):227-229. 被引量:8
  • 2李良群,姬红兵.基于最大熵模糊聚类的快速数据关联算法[J].西安电子科技大学学报,2006,33(2):251-256. 被引量:14
  • 3Babaa N,Bishop R H.Clustering approach to themultitarget multisensor tracking problem[C/OL]. Signal and Data Processing of Small Targets . 1997
  • 4Karayiannis N B.MECA:maximum entropy cluster-ing algorithm[C/OL]. IEEE World Congress onComputational Intelligence,Proceedings of the ThirdIEEE Conference . 1994
  • 5Naidu V P S,Girija G,Shanthakumar N.Three mod-el IMM-EKF for tracking targets executing evasivemaneuvers[C/OL]. 45th AIAA Aerospace SciencesMeeting and Exhibit,AIAA 2007-1204 . 2007
  • 6Peter X Liu,,Max Q,H. Meng.IEEE Online Data-Driven Fuzzy Clustering With Applications to Real-Time Robotic Tracking. IEEE Transactions on Fuzzy Systems . 2004

二级参考文献6

共引文献20

同被引文献12

  • 1Mahler R. Statistical multisource muhitarget information fu- sion[ M ]. Norwood, MA: Artech House, 2007.
  • 2Mahler R. Multitarget bayes filtering via first-order multitar- get moments[ J]. IEEE Transactions on Aerospace and Elec- tronics Systems, 2003, 39 (3) : 1152-1178.
  • 3Vo B N, Singh S, Doucet A. Sequential Monte Carlo meth- ods for multi-target filtering with random finite sets [ J ]. IEEE Transactions on Aerospace and Electronics Systems, 2005, 41 (4) : 1224-1245.
  • 4Vo B N, Ma W K. The Gaussian mixture probability hypoth- esis density filter[ J]. IEEE Transactions on Signal Process- ing, 2006,54(11) : 4091-4104.
  • 5Vo B N, Singh S, Ma W K. Tracking multiple speakers using random sets [ C ]// IEEE International Conference on Acous- tics, Speech, Signal Processing. [ S. 1. ] : IEEE Press, 2004.
  • 6Ma W K, Vo B N, Singh S, et al. Tracking an unknown time-varying number of speakers using TDOA measurements : a random finite set approach [ J ]. IEEE Transactions on Sig- nal Processing, 2006, 54(9) : 3291- 3304.
  • 7Mahler R. Approximate multi-sensor GI-'HD and FHD tilters [ C]//2010 13th Conference on Information Fusion. Edin- burgh: IEEE Press, 2010:1-8.
  • 8Mahler R. The multisensor PHD filter, I: General solution via multitarget calculus [ C ]// Signal Processing, Sensor Fusion, and Target Recognition XVIII. Proceeding of SPIE. Bellingham, Wash: SPIE Press, 2009.
  • 9Mahler R. The multisensor PHD filter, II: Erroneous solu- tion via ' Poisson magic' [ C ]// Signal Processing, Sensor Fusion, and Target Recognition XVIII. Proceeding of SPIE. Bellingham, Wash: SPIE Press, 2009.
  • 10LIAN Feng,HAN ChongZhao,LIU WeiFeng,LIU Jing,YUAN XiangHui.Joint spatial registration and multi-target tracking using an extended PM-CPHD filter[J].Science China(Information Sciences),2012,55(3):501-511. 被引量:11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部