期刊文献+

基于当前最优解的反向差分进化算法求解函数优化问题 被引量:6

Opposition-Based Differential Evolution Using the Current Optimum for Function Optimization
下载PDF
导出
摘要 当最优解偏离目标函数定义域的几何中心时,反向个体容易远离全局最优解,基于反向差分进化算法的性能会大幅降低.该文引入基于当前最优解的反向学习策略,并与差分进化算法相结合,求解函数优化问题.当前代的最优解作为候选解和相应反向个体之间的对称点,能保证反向种群的利用率始终维持在较高水平.实验结果表明,该算法可行而高效,且算法性能的提升完全是反向个体的贡献.此外,提出一种增强的基于反向差分进化算法,展示出此类优化方法的最优效果. When the global optimum is not located at the geometric center of the domain,the opposite numbers may lapse from the global optimum,leading to poor performance of opposition-based differential evolution.A novel opposition-based learning strategy using the current optimum is introduced,and it is combined with differential evolution for function optimization.The optimum in the current generation is served as a symmetry point between an estimate and the corresponding opposite estimate,resulting in a high rate of opposite population usage.Experiments results clearly show that the proposed algorithm can significantly improve the performance due to the opposite numbers.Additionally,an enhanced version of opposition-based differential evolution is proposed to reveal ideal and perfect results using opposition-based learning.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第3期308-315,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.60802056 No.61073091) 陕西省自然科学基金(No.2010JM8028) 西安理工大学优秀博士学位论文研究基金(No.105-211010)资助
关键词 差分进化 基于反向学习 当前最优解 函数优化 differential evolution opposition-based learning current optimum function optimization
  • 相关文献

参考文献26

  • 1STORN R,PRICE K.Differential evolution-a simple and efficient adiaptive scheme for global optimization over continuous spaces[R] // TR-95-012,Berkeley,USA,1995.
  • 2STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 3PRICE K V,STORN R M,LAMPINEN J A.Differential evolution:a practical approach to global optimization[M].New York:Springer,2005.
  • 4VESTERSTROEM J,THOMSEN R.A comparative study of differential evolution,particle swarm optimization,and evolutionary algorithms on numerical benchmark problems[C] //IEEE Congress on Evolutionary Computation,Portland,USA,2004:1980-1987.
  • 5ANDRE J,SIARRY P,DOGNON T.An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization[J].Advance in Engineering Software,2001,32(1):49-60.
  • 6HRSTKA O,KUCEROVE A.Improvement of real coded genetic algorithm based on differential operators preventing premature convergence[J].Advance in Engineering Software,2004,35(3/4):237-246.
  • 7TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C] //International,Conference on Computational Intelligence for Modelling,Control and Automation,and International Conference on Intelligent Agents,Web Technologies and Internet Commerce,Vienna,Austria,2005:695-701.
  • 8RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Opposition versus randomness in soft computing techniques[J].Applied Soft Computing,2008,8(2):906-918.
  • 9TIZHOOSH H R.Opposition-based reinforcement learning[J].Journal of Advanced Computational Intelligence and Intelligent Informtics,2006,10(4):578-585.
  • 10LIN Zhiyi,WANG Lingllng.A new opposition-based compact genetic algorithm with fluctuation[J].Journal of Computational Information Systems,2010,6(3):897-904.

同被引文献51

  • 1韦素云,肖静静,业宁.基于联合聚类平滑的协同过滤算法[J].计算机研究与发展,2013,50(S2):163-169. 被引量:12
  • 2王鹏,杨士强,刘志强.信息论联合聚类算法及其在视频镜头聚类中的应用[J].计算机学报,2005,28(10):1692-1699. 被引量:6
  • 3林卫星,张惠娣,刘士荣,钱积新.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75-79. 被引量:22
  • 4颜学峰,余娟,钱锋,丁军委.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版),2006,32(1):94-97. 被引量:34
  • 5MUZAFFAR M E, KEVIN E L. Optimization of water distribution network design using the shuffled frog leaping algorithm[ J]. Journal of Water Resources Planning and Management,2003,129 (3) : 210-225.
  • 6ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Enginee- r ng nlormat cs,2005,19 ( 1 ) :43- 53.
  • 7ZHEN Zi-yang, WANG Zhi-sheng, GU Zhou, et al. A novel memetic algorithm for global optimization based on PSO and SFLA[ C ]//Proc of the 2nd International Conference on Advances Computation and In- telligence. Berlin : Springer-Verlag, 2007 : 127 - 136.
  • 8BHADURI A. A clonally selection based shuffled frog leaping algo- rithm[ C] //Proc of IEEE International Advance Computing Confer- enee. 2009 : 125-130.
  • 9TIZHOOSH H R. Opposition-based learning: a new scheme for ma- chine intelligence[ C ]//Proc of International Conference on Computa- tional Intelligence for Modelling, Control and Automation. Washing- ton DC : IEEE Computer Society,2005:695- 701.
  • 10LIN Zhi-yi, WANG Ling-ling. A new opposition-based compact ge- netic algorithm with fluctuation[ J]. Journal of Computational In- formation Systems,2010,6 ( 3 ) : 897- 904.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部