期刊文献+

基于弱Kerr非线性相互作用的近乎确定性可控量子隐形传态(英文) 被引量:6

Nearly deterministic controlled teleportation for photonic qubit via weak cross-Kerr nonlinearity
下载PDF
导出
摘要 基于cross-Kerr非线性相互作用,提出了一种近似确定性的可控量子隐形传态方案。利用量子非破坏性测量技术较容易地实现了复杂的控制非操作和贝尔态分析过程,这使得此方案比以往使用投影测量的隐形传态方案效率更高,进一步分析表明方案在现有的实验条件下是切实可行的。 A scheme for teleporting an unknown single-qubit photonic state in a nearly deterministic and controlled manner is proposed via the weak cross-Kerr nonlinearities. The functions of the complicated CNOT operations and Bell-state analysis can be realized easily with the help of quantum nondemolition measurement technique. This improvement makes the present scheme more efficient than the schemes using nonunitary projective measurements. Discussions about this scheme show that it is feasible with the current experimental technology in optics
作者 周建 杨名
出处 《量子电子学报》 CAS CSCD 北大核心 2011年第3期350-356,共7页 Chinese Journal of Quantum Electronics
基金 supported by National Natural Science Foundation of China(10704001,61073048) the Key Project of Chinese Ministry of Education(210092) the Key Program of the Education Department of Anhui Province (KJ2009B179Z,2009SQRZ196,KJ2008A28ZC,KJ2009A048Z,2010SQRL153ZD,and KJ2010A287)
关键词 量子光学 可控量子隐形传态 cross—Kerr非线性相互作用 近似确定性的 quantum optics controlled teleportation cross-Kerr nonlinearity nearly determinacy
  • 相关文献

参考文献3

二级参考文献25

共引文献10

同被引文献39

  • 1戴宏毅,李承祖,陈平形.未知高维量子态的概率隐形传送[J].量子光学学报,2004,10(B09):12-13. 被引量:1
  • 2ZHANG Zhan-Jun,LIU Yi-Min,MAN Zhong-Xiao.Many-Agent Controlled Teleportation of Multi-qubit Quantum Information via Quantum Entanglement Swapping[J].Communications in Theoretical Physics,2005,44(5X):847-850. 被引量:14
  • 3王淑梅,马鸿洋.量子网络中多用户量子密钥共享协议[J].计算机工程,2007,33(10):155-157. 被引量:3
  • 4Bennett C H,Brassard G,Crepeau C,Jozsa R,Peres A and Wooters W K.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].Phys.Rev.Lett.,1993,70(13):1895-1899.
  • 5Bouwmeaster D,Pan J W,Mattle K,Eibl M,Weinfurter H and Zeilinger A.Experimental quantum teleportation [J].Nature,1997,390:575-579.
  • 6Vaidman L.Teleportation of quantum states[J].Phys.Rev.A,1994,49(2):1473-1476.
  • 7Braunstein S L and Kimble H J.Teleportation of continuous quantum variables [J].Phys.Rev.Lett.,1998,80(4):869-872.
  • 8Yu S X and Sun C P.Canonical quantum teleportation [J].Phys.Rev.A,2000,61:022310.
  • 9Furusawa A,Sorensen J L,Braunstein S L,Fuchs C A,Kimble H J and Polzik E S.Unconditional quantum teleportation [J].Science,1998,282:706-709.
  • 10Shi B C,Jing Y K and Guo G C.Probabilistic teleportation of two-particle entangled state [J].Phys.Lett.A,2000,268:161-164.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部