期刊文献+

基于拟态物理学方法的全局优化算法 被引量:16

Physicomimetics Method for Global Optimization
下载PDF
导出
摘要 受拟态物理学方法的启发,就物理个体与理想粒子的特征异同问题,通过建立拟态物理学方法与基于种群优化算法的映射关系,设计出一种面向全局优化函数的拟态物理学算法框架.这是一种基于群体的随机优化算法,每个样本解被看作一个具有质量、速度和位置属性的物理个体,个体质量是用户定义的有关其目标适应值的函数,个体的适应值越好质量就越大,则个体间的虚拟作用力就越大.利用牛顿万有引力定律定义了个体之间的虚拟作用力,制定了个体之间的引?斥力规则,使得适应值较好个体吸引适应值较差个体,适应值较差个体排斥适应值较好个体,最好个体则不受其他个体的吸引或排斥.该方法利用这种引?斥力规则使得整个种群向更好的搜索区域移动.实验结果表明该算法的有效性. Inspired by artificial physics(AP) approach,a framework of artificial physics optimization(APO) algorithm is presented to solve global optimization problem.Comparing the similarities and differences of physical individual and ideal particle,we construct a mapping between AP approach and a population-based optimization algorithm.APO algorithm is a population-based stochastic search method.In the framework,each sample point can be treated as a physical individual with the properties of mass,velocity and position.The mass of each individual corresponds to a user-defined function of the value of an objective function to be optimized.The better the objective function value,the bigger the mass,and then the higher the magnitude of attraction.The virtual forces among individuals are defined by Newton's gravity law and an attraction-repulsion rule is established among them,which makes the individual attract others with the worse fitness and repel others with the better fitness,and the individual with the best fitness attracts all the others,whereas it is never repelled or attracted by others.The attractive-repulsive rule can be treated as the search strategy in optimization algorithm which will lead the population to search the better fitness region of the problem.The simulation results indicate the validity of the approach.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第5期848-854,共7页 Journal of Computer Research and Development
基金 山西省自然科学基金项目(2008011027-2)
关键词 群体智能 拟态物理学 全局优化算法 牛顿第二定律 虚拟力 swarm intelligence physicomimetics global optimization Newton's second law virtual force
  • 相关文献

参考文献14

  • 1Holland, J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor, MI: University of Michigan Press, 1975.
  • 2Dorigo M, Birattari M, Stutzle T. Ant colony optimization- Artificial ants as a computational intelligence technique [J], IEEE Computational Intelligence Magazine, 2006, 1 (4):28-39.
  • 3Eberhart R, Kennedy J. New optimizer using particle swarm theory [C] //Proc of the 6th Int Symp on Micro Machine and Human Science. Los Alamitos, CA: IEEE Computer Society, 1995: 39-43.
  • 4介婧,曾建潮,韩崇昭.基于群体多样性反馈控制的自组织微粒群算法[J].计算机研究与发展,2008,45(3):464-471. 被引量:25
  • 5Suman B, Kumar P. A survey of simulated annealing as a tool for single and muhiobiective optimization [J]. Journal of the Operational Research Society, 2006, 57 (10) : 1143-1160.
  • 6Richard A. Formato, J D. Central force optimization: A new nature inspired computational framework for multidimensional search and optimization [J]. Nature Inspired Cooperative Strategies for Optimization, 2008, 129:221-238.
  • 7Birbil S I, Fang S C. An electromagnetism-like mechanism for global optimization [J]. Journal of Global Optimization, 2003, 25(3): 263-282.
  • 8Spears W M, Spears D F, Kerr W, et al. An overview of physicomimetics [G] //LNCS 3342: State of the Art Series. Berlin: Springer, 2005, 3342:84-97.
  • 9Spears W M, Spears D F. Using artificial physics to control agents [C] //Proc of the IEEE Int Conf on Information, Intelligence, and Systems (ICIIS'99). Los Alamitos, CA: IEEE Computer Society, 1999:281-288.
  • 10Spears W M, Hell R. Zarzhitsky D. Artificial physics for mobile robot formations [J]. Systems, Man and Cybernetics, 2005, 3:2287-2292.

二级参考文献37

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3Xue Songdong, Zeng Jianchao. Sense Limitedly, Interact Locally: the Control Strategy for Swarm Robots Search//Proc of the IEEE International Conference on Networking, Sensing and Control. Sanya, China, 2008 : 402 - 407.
  • 4Kantor G, Singh S, Peterson R, et al. Distributed Search and Rescue with Robot and Sensor Teams. Springer Tracts in Advanced Robotics, 2006, 24(2) : 529 -538.
  • 5Hayes A T. Self-Organized Robotic System Design and Autonomous Odor Localization. Ph. D Dissertation. Pasadena, USA: California Institute of Technology, 2002.
  • 6Cui X, Hardin T, Ragade R K, et al. A Swarm Approach for Emission Sources Localization // Proc of the 16th IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, USA, 2004 : 424 - 430.
  • 7Marques L, Nunes U, de Almeida A T. Particle Swarm Based Olfactory Guided Search. Autonomous Robotics. 2006, 20 ( 3 ) : 277 - 287.
  • 8Marques L, Nunes U, de Almeida A T. Odor Searching with Autonomous Mobile Robots: An Evolutionary-Based Approach// Proc of the 11th International Conference on Advanced Robotics. Coimbra, Portugal, 2003 : 494 - 500.
  • 9Jatmiko W, Sekiyama K, Fukuda T. A PSO-Based Mobile Sensor Network for Odor Source Localization in Dynamic Environment : Theory, Simulation and Measurement//Proc of the IEEE Congress on Evolutionary Computation. Vancouver, Canada, 2006 : 1036 - 1043.
  • 10Doctor S, Venayagamoorthy G K, Gudise V G. Optimal PSO for Collective Robotic Search Applications//Proc of the IEEE Congress on Evolutionary Computation. Portland, USA, 2004, 11 : 1390 - 1395.

共引文献157

同被引文献117

  • 1李彤,王春峰,王文波,宿伟玲.求解整数规划的一种仿生类全局优化算法——模拟植物生长算法[J].系统工程理论与实践,2005,25(1):76-85. 被引量:146
  • 2王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196. 被引量:41
  • 3XIE LIPING, TAN YING, ZENG JIANCHAO, et al. Artificial physics optimization:a brief survey [ J ]. International Journal of Bio- Inspired Computation ,2010,2 ( 5 ) :291-302.
  • 4XIE LIPING, TAN YING, ZENG JIANCHAO, et al. The convergence analysis of artificial physics optimisation algorithm [ J ]. Int. J. of Intelligent Information and Database Systems, 2011,5 (6) : 536 -554.
  • 5XIE LIPING, ZENG JIANCHAO, RICHARD A FORMATO. Convergence Analysis and Performance of the Extended Artificial Physics Optimization Algorithm [ J ]. Applied Mathematics and Computation, 2011,218:4000-4011.
  • 6XIE LIPING, ZENG JIANCHAO, CAI XINGJUAN. A Hybrid Vector Artificial Physics Optimization with Multi-Dimensional Search Method[ C ]//The 2nd International Conference on Innovations in Bio-inspired Computing and Applications( IBICA-2011 ) , Shenz- hen :2011.
  • 7YANG G J, XIE L P,TAN Y, et al. A Hybrid Vector Artificial Physics Optimization with One-Dimensional Search Method [ C ]// International Conference on Computational Aspects of Social Networks ,Taiyuan, China :2010.
  • 8XIE LIPING, TAN YING,ZENG JIANCHAO. A Study on the Effect of Vmax in Artificial Physics Optimization Algorithm with High Dimension[ C ]//The Second International Conference of Soft Computing and Pattern Recognition, Dalian :2011.
  • 9XIE LIPING, ZENG JIANCHAO. A Hybrid Vector Artificial Physics Optimization for Constrained Optimization Problems[ C ]//The First International Conference on Robot, Vision and Signal Processing, Taiwan, Kaohsinng:2011.
  • 10SHI Y, EBERHART R C. Empirical study of particle swarm optimization [ C ]//The Congress on Evolutionary Computation, Washington DC, 1999 : 1945-1950.

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部