期刊文献+

基于AMPSO算法与神经网络的风电场发电量预测 被引量:6

Prediction Study of Wind Energy Based on AMPSO Algorithm and Neural Network
原文传递
导出
摘要 分析了影响风电场发电量的主要因素,提出了一种新的基于人工神经网络的风电场发电量预测方法。针对传统神经网络预测模型的预测质量由于陷入局部最优、训练难收敛等原因而降低的情况,该方法引入了自适应变异粒子群算法(AMPSO)对神经网络的权值和阀值进行训练,并且在训练过程中通过比较不同隐层节点数所对应的输出误差来确定神经网络的最优拓扑结构。使用张北县风电场的实际测量数据进行建模预测,结果证明了本文描述的模型是一种有效可行的风电场发电量预测方法。 This paper analyzes the main influencing factors for the wind energy of wind farms,and proposes a novel model for the prediction of wind energy based on artificial neural network.Compared with traditional neural networks based forecasting methods,this model has introduced Adaptive Mutation Particle Swarm Optimization(AMPSO) algorithm to the training phase of the neural network,and by error and trial the topology of neural network is determined.Simulation and test results of this proposed network are reported,showing that the predicted values of wind energy are in agreement with the actual values.
出处 《华东电力》 北大核心 2011年第5期797-802,共6页 East China Electric Power
基金 国家863计划项目(G20080188) 浙江省科技计划项目(G20080188)~~
关键词 风力发电 发电量预测 自适应粒子群算法 人工神经网络 Wind energy Power prediction Adaptive Mutation Particle Swarm Optimization artificial neural network
  • 相关文献

参考文献12

  • 1高阳,陈华宇,欧阳群.风电场发电量预测技术研究综述[J].电网与清洁能源,2010,26(4):60-63. 被引量:22
  • 2FOLEY A M, LEAHY P G, MCKEOGH E J. Wind Power Forecasting& Prediction Methods[ C ]. 9th International Con- ference on Environment and Electrical Engineering, May 2010: 1-4.
  • 3陈兆庆,王峥,陆艳艳,李睿元.华东沿海风电场出力预测的研究和探讨[J].华东电力,2010,38(3):384-387. 被引量:5
  • 4彭怀午,刘方锐,杨晓峰.基于人工神经网络的风电功率短期预测研究[J].华东电力,2009,37(11):1918-1921. 被引量:17
  • 5Giusppe Grassi, Pietro Vecchio. Wind energy prediction u- sine a two-hidden layer neural network[ J]. Commun Nonlin- ear Sci Numer Simulat, 2010: 2262-2266.
  • 6MABLE M C, FERNANDEZ E. Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks [ J ]. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 2, JUNE 2009:459-465.
  • 7KELOUWANI S, AGBOSSOU K. Non-linear model of Identi- fication of wind turbine with a neural network. IEEE Trans. Energy Convers. , Vol. 19, no. 3, Sep. 2004: 607-612.
  • 8BASHIR Z A, EI-HAWARY M E. Fellow, IEEE, Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks. IEEE Trans Power Syst 2009 : 24 (Feb) : 20 -27.
  • 9AMJADY N, KEYNIA F. Short-term load forecasting of pow- er systems by combination of wavelet transform and neural ev- olutionary algorithm. Energy 34 (2009) : 46-57.
  • 10阳春华,谷丽姗,桂卫华.自适应变异的粒子群优化算法[J].计算机工程,2008,34(16):188-190. 被引量:51

二级参考文献41

共引文献539

同被引文献62

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部