期刊文献+

改进的聚类分析算法在高校人力资源管理中的应用 被引量:3

Application of Improved Cluster Analysis in College Human Resources Management
下载PDF
导出
摘要 聚类分析是数据挖掘中的一个重要技术。提出了一种改进的聚类分析算法,它基于中心距离比值指标,可以自主获得最佳聚类数和聚类结果。并针对一个真实的高校人力资源数据库集,采用改进的聚类算法对教师的现状进行客观而有效的描述,结果表明将聚类算法用于高校人力资源管理是有效的。 Cluster analysis is one of the important techniques in data mining.An improved cluster analysis is proposed which is based on center distance radio principle.and it can get optimal cluster number and result independently.Accoding to an actual dataset of college human resources,the improved cluster analysis is adopted to describe the current situation of teachers impersonally and effectively.The result indicates that it's effective to apply cluster analysis to college human resources management.
作者 刘放 叶菲
出处 《皖西学院学报》 2011年第2期39-41,共3页 Journal of West Anhui University
关键词 数据挖掘 高校人力资源 聚类分析 data mining college human resources management cluster analysis
  • 相关文献

参考文献6

二级参考文献38

共引文献221

同被引文献37

  • 1杨光.浅析数据挖掘在CRM中的应用[J].情报科学,2005,23(2):278-280. 被引量:20
  • 2许海洋,汪国安,王万森.模糊聚类分析在数据挖掘中的应用研究[J].计算机工程与应用,2005,41(17):177-179. 被引量:25
  • 3曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 4崔玉华,李俊杰,刘国华,王东方.基于分类挖掘的企业定单分析系统[J].计算机系统应用,2007,16(10):11-14. 被引量:1
  • 5Agrawal R, Imielinski T, Swami A. Mining Associa- tion Rules Between Sets of Items in Large Databases EC-]//Proceedings of the ACM SIGMOD Conference on Management of Data New York~ ACM, 1993 : 207-216.
  • 6Agrawal R, SriKant R. Fast Algorithms for Mining Association Rules[C]//Proceedings of the 20th Inter- national Conference on Very Large Database. Is. n]: Morgan Kaufman Pub Inc, 1994 ~ 487-499.
  • 7Savasere A, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Data- bases[-C]//Proceedings of the 21 s2 International Con- ference on Very Large Database New York.. ACM,1995:432-443.
  • 8Park J S, Chen Ming Syan, Yu Philip S. An Effective Hash-based Algorithm for Mining Association Rules FC]//Proceedings of the ACM SIGMOD International Conference on Management of Data. New York~ ACM, 1995 : 175-186.
  • 9Park J S, Chen Ming Syan, Yu Philip S. Efficient Par- allel Data Mining of Association Rules EC~//Proceed- ings of the 4th International Conference on Information and Knowledge Management. New York~ ACM, 1995: 31-36.
  • 10Toivonen H. Sampling Large Databases for Association RulesEC]//Proceedings of the 22nd International Con- ference on Very Large Database Bombay[-s. rL ]. 1996: 134-145.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部