期刊文献+

Alkali metal atom adsorption on-top of the F_s^0 defective center of MgO(001) surface

Alkali metal atom adsorption on-top of the F_s^0 defective center of MgO(001) surface
下载PDF
导出
摘要 A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0 s defective center of MgO(001) surface. Among all the alkali metals, the lithium atom binds most strongly with the highest adsorption energy of 0.67 eV and the shortest distance of about 0.257 nm between metal and the surface, the binding energy for the sodium atom comes second, and just half of this value for the other alkali metal atoms. The relatively strong interaction of Li with the F 0 s center can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the projected charge density. The bonding mechanism is discussed in detail. A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0 s defective center of MgO(001) surface. Among all the alkali metals, the lithium atom binds most strongly with the highest adsorption energy of 0.67 eV and the shortest distance of about 0.257 nm between metal and the surface, the binding energy for the sodium atom comes second, and just half of this value for the other alkali metal atoms. The relatively strong interaction of Li with the F 0 s center can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the projected charge density. The bonding mechanism is discussed in detail.
出处 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期223-228,共6页 上海大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No.60877017) the Innovation Program of Shanghai Municipal Education Commission (Grant No.08YZ04)
关键词 alkali metal atom oxygen vacancy ADSORPTION MGO density functional theory (DFT) alkali metal atom oxygen vacancy adsorption MgO density functional theory (DFT)
  • 相关文献

参考文献19

  • 1FINAZZI E,VALENTIN C,PACCHIONI G,CHIESA M,GIAMELLO E,GAO H,LIAN J,RISSE T,FREUND H J.Properties of alkali metal atoms deposited on a MgO surface:A systematic experimental and theoretical study[J].Chemistry-A European Journal,2008,14(4):4404-4414.
  • 2KAROLEWSKI M A,CAVELL R G.Coadsorption of cesium and water on MgO(100)[J].Surface Science,1992,271(1/2):128-138.
  • 3HUANG H H,JIANG X,ZOU Z,CHIN W S,XU G Q,DAI W L,FAN K N,DENG J F.Potassium adsorption and reaction with water on MgO(100)[J].Surface Science,1998,412-413(3):555-561.
  • 4YAN Y Y,CHISHOLM M F,PENNYCOOK S J,PANTELIDES S T.Structures of pure and Ca-segregated MgO (001) surfaces[J].Surface Science,1999,442(2):251-255.
  • 5SILVIA B,CRISTIANA D V,GIANFRANCO P.Alkali metal doping of MgO:Mechanisms of formation of paramagnetic surface centers[J].Journal of Physical Chemistry B,2003,107(33):8498-8506.
  • 6LIAN J C,FINAZZI E,VALENTIN C,RISSE T,GAO H J,PACCHIONI G,FREUND H J.Li atoms deposited on single crystalline MgO(001) surface.A combined experimental and theoretical study[J].Chemical Physics Letters,2008,450(4/6):308-311.
  • 7MARTINEZ U,GIORDANO L,PACCHIONI G.Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms[J].Journal of Chemical Physics,2008,128(16),DOI:10.1063/1.2905218.
  • 8SNYDER J A,JAFFE J E,GUTOWSKI M,LIN Z,HESS A C.LDA and GGA calculations of alkali metal adsorption at the (001) surface of MgO[J].The Journal of Chemical Physics,2000,112(6):3014-3022.
  • 9ZOBEL N,BEHRENDT F.Activation energy for hydrogen abstraction from methane over Li-doped MgO:A density functional theory study[J].Journal of Chemical Physics,2006,125(7),DOI:10.1063/1.2227387.
  • 10KIM Y D,STULTZ J,WEI T,GOODMAN D W.Interaction of Ag with MgO(100)[J].Journal of Physical Chemistry B,2002,106(27):6827-6830.

二级参考文献26

  • 1K. Prabhakaran, D. Purdie, R. Casanova, C. A. Muryn, P. J. Hardman, P. L. Wincott, and G. Thornton, Phys. Rev. B 45, 6969 (1992).
  • 2T. Kendelewicz, P. Liu, G. E. Brown, E. J. Nelson, and P. Pianetta, Surf. Sci. 352, 451 (1996).
  • 3D. R. Alfonso, J. E. Jaffe, A. C. Hess, and M. Gutowski, Surf. Sci. 466, 111 (2000).
  • 4M. A. San Miguel, C. J. Calzado, and J. F. Sanz, J. Phy. Chem. B 105, 1794 (2001).
  • 5A. Kiejna, T. Ossowski, and E. Wachowicz, Surf. Sci. 548, 22 (2004).
  • 6M. Caragiu and S. Finberg, J. Phys: Condensed. Matter. 17, 995 (2005).
  • 7E. Finazzi, C. D. Valentin, G. Pacchioni, M. Chiesa, E. Giamello, H. J. Gao, J. C. Lian, T. Risse, and H. J. Freund, Chem. Eur. 3. 14, 4404 (2008).
  • 8M. A. Karolewski and R. G. Cavell, Surf. Sci. 271, 128 (1992).
  • 9H. H. Huang, X. Jiang, Z. Zou, W. S. Chin, G. Q. Xu, W. L. Dai, K. N. Fan, and J. F. Deng, Surf. Sci. 412/413, 555 (1998).
  • 10J. H. Lunsford, Angew Chem. Int. Ed. 34, 970 (1995).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部