期刊文献+

多源遥感数据融合的发展趋势 被引量:11

The Trend of Development of Multi-Source Remote Sensing Data Fusion
下载PDF
导出
摘要 随着遥感技术的快速发展,影像和数据融合领域的新方法、新算法层出不穷。遥感影像融合技术可以分为3个不同的层次:像素级、特征级和决策级。在回顾现有的多源遥感数据融合技术的基础上,讨论了融合技术的发展趋势。主要讨论内容包括多源高分辨率影像融合新方法、面向应用的影像融合评价和趋势、用于生态建模的LiDAR数据/多源光学/雷达影像融合和分布式传感器网络数据融合等。 With the fast development of remote sensor technologies, the development of new methods and algorithms of multi-source remote sensing data fusion techniques are emerging one after another. Usually fusion techniques can be classified into three levels: the pixel level, the feature level and the decision level. The paper has discussed the following development trends for image and data fusion. The first is new image fusion method for high resolution images; the second is user-oriented image fusion assessment, the third is LiDAR, Optical and SAR data fusion for ecological modeling, and the final is distributed sensor network data fusion.
作者 张继贤
出处 《地理信息世界》 2011年第2期18-20,共3页 Geomatics World
关键词 遥感 影像和数据融合 发展趋势 remote sensing image and data fusion development trend
  • 相关文献

参考文献10

  • 1Pohl, C. and van Genderen, J.L. Muhisensor image fusion in remote sensing: concepts, methods and applications [J]. International Journal of Remote Sensing, 1998, 19 (5):823-854.
  • 2Zhang, J.X. Multi-source remote sensing da- ta fusion: status and trends [J]. Internation- al Journal of hnage and Data Fusion, 2010, 1 (1): 5-24.
  • 3Sun, G. and Ranson, K.J. Modeling LiDAR returns from forest canopies [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 (6): 2617-2626.
  • 4Sun, G. and Ranson, K.J. A three-dimen- sional radar backscatter model of forest canopies [Jl. IEEE Transactions on Geo- science and Remote Sensing, 1995, 33: 372-382.
  • 5Dubayah, R., Knox, R., Hofton, M., Blair, J.B. and Drake, J. Land surface characterization using LiDAR remote sensing [C]// M.J. Hill and R.J. Aspinall, eds. Spatial Information for Land Use Management. Singapore: Inter- national Publishers Direct, 2000: 25-38.
  • 6Guo, Z.F., Sun, G.Q., Ranson, K.J., Ni, WJ. and Qin, W.H. The Potential of Combined Lidar and SAR Data in Retrieving Forest Parame- ters using Model Analysis [C]// Proceedings of IGARSS 2008. 5: V-542-V-545.
  • 7Koetz B., Morsdorf, F., Sun, G., Ranson, K. J., hten, K., and Allgower, B. Inversion of a LiDAR waveform model for forest biophysi- cal parameter estimation [J]. IEEE Geo- science and Remote Sensing Letters, 2006, 3 (1): 49-53.
  • 8Koetz, B., Sun, G., Morsdorf, F., Ranson, K. J., Kneubuhle, R.M., Iuen, K.I., and Allg? wer, B. Fusion of imaging spectrometer and LIDAR data over combined radiative trans- fer models for forest canopy characterization [J]. Remote Sensing of Environment, 2007, 106 ('4):449-459.
  • 9Lamborn, P. and Williams P.J. Data fusion on a distributed heterogeneous sensor net- work [C]//Proceedings of SPIE, the Inter- national Society for Optical Engineering, 2006, 6242, 62420R.1-62420R.8.
  • 10Zhang, J.X., Yang, J.H., Zhao, Z., Li, H.T., and Zhang, Y.H. Block-Regression-based Fusion of Optical and SAR Imagery for Feature Enhancement [J]. International Journal of Remote Sensing, 2010, 31 (9): 2325 - 2345.

同被引文献146

引证文献11

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部