期刊文献+

带有RCH抵消策略的负顾客Geo/Geo/1单重休假排队模型

Geo/Geo/1 queue model with RCH strategy of negative customers and single vacation
下载PDF
导出
摘要 文中研究了一个带RCH(Removal of Custom ers in the Head)抵消策略的负顾客的单重休假Geo/Geo/1离散时间排队系统.到达的负顾客不接受服务,只抵消正在接受服务的正顾客,若系统处于假期或闲期,则到达的负顾客自动消失.利用拟生灭过程和矩阵几何解的方法得到了队长稳态分布的存在条件和表达式,以及稳态下系统队长的条件随机分解和由休假引起的附加队长的分布表达式. A queue of Geo/Geo/1 type with RCH(Removal of Customers in the Head) strategy of negative customers and single vacations is discussed.Negative customers need no services,only removing the positive customers who are receiving service one by one.When a negative customer arrives,if the system is on vacation or in idle period,it will disappear.Using QBD process and matrix-geometric approach,the equilibrium condition and concise expression of the steady-state distribution for queue length are gained.At the same time,the conditional stochastic decomposition structure of queue length in steady state and the distribution of additional queue length are also obtained.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第2期191-194,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 离散时间排队 负顾客 矩阵几何解 条件随机分解 discrete-time queue negative customer matrix-geometric approach conditional stochastic decomposition
  • 相关文献

参考文献6

二级参考文献17

  • 1朱翼隽,陈燕,胡波.具有负顾客的GI/M/1休假排队模型[J].江苏大学学报(自然科学版),2004,25(4):315-318. 被引量:10
  • 2田乃硕.休假随机服务系统[M].北京:北京大学出版社,2002.148-162.
  • 3Gelenbe E.Queues with negative arrivals[J].J Appl Prob,1991(28):245-250.
  • 4Atencia I,Moreno P.A single-server G-queue in discrete-time with geometrical arrival and service process[J].Performance Evaluation,2005,59:86-97.
  • 5Atencia I,Moreno P.The discrete-time Geo/Geo/1 queue with negative customers and disasters[J].Comput Oper Res,2004,31:1537-1548.
  • 6Servi L. D, Finn S.G. M/M/1 queues with working vacations (M/M/1/WV) [ J]. Performance Evaluation, 2002,50:41-52,
  • 7Wen- yuan Liu,, Xiu -li Xu, Nai- shuo Tian. Stochastic decompositions in the M/M/1 queue with working vacations[ J]. Operations Research Letters, 2007, 35:595-600.
  • 8Yutaka Baba. Analysis of a GI/M/1 queue with multlple working vacations[ J]. Operations Research Letters, 2005, 33:201- 209.
  • 9Krlshna Kumar B, Arivudalnambi D, Krishnamoorthy A. Some resuhs on a generalized M/G/1 feedback queue with negative customers[ J ]. Operations Research Letters, 2006,143:277-296.
  • 10Yang WS, Chae KC. A note on the GI/M/1 queue with Poisson negative arrivals[ J]. Journal of Applied Probability, 2001, 38:1081-1085.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部