摘要
文中研究了一个带RCH(Removal of Custom ers in the Head)抵消策略的负顾客的单重休假Geo/Geo/1离散时间排队系统.到达的负顾客不接受服务,只抵消正在接受服务的正顾客,若系统处于假期或闲期,则到达的负顾客自动消失.利用拟生灭过程和矩阵几何解的方法得到了队长稳态分布的存在条件和表达式,以及稳态下系统队长的条件随机分解和由休假引起的附加队长的分布表达式.
A queue of Geo/Geo/1 type with RCH(Removal of Customers in the Head) strategy of negative customers and single vacations is discussed.Negative customers need no services,only removing the positive customers who are receiving service one by one.When a negative customer arrives,if the system is on vacation or in idle period,it will disappear.Using QBD process and matrix-geometric approach,the equilibrium condition and concise expression of the steady-state distribution for queue length are gained.At the same time,the conditional stochastic decomposition structure of queue length in steady state and the distribution of additional queue length are also obtained.
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2011年第2期191-194,共4页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词
离散时间排队
负顾客
矩阵几何解
条件随机分解
discrete-time queue
negative customer
matrix-geometric approach
conditional stochastic decomposition