期刊文献+

快速核有监督局部保留投影算法 被引量:5

A Fast Kernel Supervised Locality Preserving Projection Algorithm
下载PDF
导出
摘要 为了提取样本中的非线性模式,保持其中的流形结构以及减少投影时间,该文提出了一种快速核有监督局部保留投影算法。该算法使用有监督聚类选择法选取训练集的一个子集进行子集核主成分分析,然后在子集核主成分分析形成的子空间中进行有监督局部保留投影。实验结果表明:相对于有监督局部保留投影算法以及现有的几种流行特征提取方法,新算法能够取得更高的识别率;相对于现有的核投影算法,新算法的投影速度更快。在有些数据集上,只要普通核投影十分之一左右的时间,就能达到相同甚至更高的识别率。 To extract nonlinear patterns,preserve the manifold structure,and reduce the projection time,a Fast Kernel Supervised Locality Preserving Projection(FKSLPP) algorithm is proposed.This new algorithm firstly selects a subset of the training set by supervised cluster selection algorithm to do Subset Kernel Principal Component Analysis(SKPCA),and then Supervised Locality Preserving Projection(SLPP) is performed in SKPCA subspace.Experiments results show that compared with SLPP and some other popular feature extraction algorithms,FKSLPP can get higher recognition rates;compared with kernel projection algorithms of state of art,FKSLPP is much faster.In some datasets,FKSLPP can get same or higher recognition rates while costs only one-tenth processing time of the common kernel projection algorithms.
机构地区 电子工程学院
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第5期1049-1054,共6页 Journal of Electronics & Information Technology
关键词 模式识别 特征提取 有监督局部保留投影 子集核主成分分析 Pattern recognition Feature extraction Supervised locality preserving projection Subset kernel principal component analysis
  • 相关文献

参考文献10

  • 1Loog M and Duin R P W.Linear dimensionality reduction via a heteroscedastic extension of LDA:the Chernoff criterion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(6):732-739.
  • 2Dss K and Nenadic Z.Approximate information discriminant analysis:a computationallv simple heteroscedastic feature extraction technique[J].Pattern Recognition,2008,41(5):1548-1557.
  • 3He Xiao-fei.Locality preserving projections[D].[Ph.D.dissertation],The University of Chicago,2005.
  • 4申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30
  • 5王晓明,王士同.广义的监督局部保留投影算法[J].电子与信息学报,2009,31(8):1840-1845. 被引量:7
  • 6Feng Gui-yu,Hu De-wen,Zhang D,and Zhou Zong-tan.An alternative formulation of kernel LPP with application to image recognition[J].Neurocomputing,2006,69(13-15):1733-1738.
  • 7Yang Jian,Jin Zhong,and Yang Jing-yu,et al..Essence of kernel Fisher discrimiaant:KPCA plus LDA[J].Pattern Recognition,2004,37(10):2097-2100.
  • 8Yoshikazu Washizawa.Subset kernel principal component analysis[C].IEEE International Workshop on Machine Learning for Signal Processing,Grenoble,France,September 2-4,2009:1-6.
  • 9Theodoridis S and Koutroumbas K.Pattern Recognition[M].Fourth edition,Beijing:China Machine Press,2009:278-280.
  • 10Rueda L and Herrera M.Linear dimensionality reduction by maximizing the Chernoff distance in the transformed space[J].Pattern Recognition,2008,41(10):3138-3152.

二级参考文献27

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 3He X and Niyogi P.Locality preserving projections[C].Proc.Conf.Advances in Neural Information Processing Systems,Vancouver,Canada,2003:585-591.
  • 4Kokiopoulou E and Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
  • 5Tao Q,Wu G W,and Wang J.The theoretical analysis of FDA and applications[J].Pattern Recognition,2006,39(6):1199-1204.
  • 6Liu J,Chen S C,and Tan X Y.A study on three linear discriminant analysis based methods in small sample size problem.Pattern Recognition,2008,41(1):102-116.
  • 7Zhuang X S and Dai D Q.Improved discriminate analysis for high-dimensional data and its application to face recognition[J].Pattern Recognition,2007,40(5):1570-1578.
  • 8Cai D,He X,and Han J,et al..Orthogonal laplacianfaces for face recognition[J].IEEE Transactions on Image Processing,2006,15(11):3608-3614.
  • 9Turk M and Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 10Masashi Sugiyama.Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J].Journal of Machine Learning Research,2007,8(5):1027-1061.

共引文献33

同被引文献52

  • 1王和勇,姚正安,李磊.基于聚类的核主成分分析在特征提取中的应用[J].计算机科学,2005,32(4):64-66. 被引量:20
  • 2范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 3DUDA R O,HART P E,STORK D G.Pattern classification[M].2nded.New York:Wiley,2000.
  • 4DASH M,LIU H.Feature selection for classification[J].IntelligentData Analysis,1997,1(3):131-156.
  • 5BISHOP C M.Neural networks for pattern recognition[M].NewYork:Oxford University Press,1995.
  • 6HE Xiao-fei,CAI Deng,NIYOGI P.Laplacian score for feature selec-tion[C]//Advances in Neural Information Processing Systems.Cam-bridge,MA:MIT Press,2005:507-514.
  • 7ZHANG Dao-qiang,CHEN Song-can,ZHOU Zhi-hua.Constraintscore:a new filter method for feature selection with pairwise con-straints[J].Pattern Recognition,2008,41(5):1440-1451.
  • 8ZHAO Zheng,LIU Huan.Semi-supervised feature selection via spec-tral analysis[C]//Proc of the 7th SIAM International Conference onData Mining.2007.
  • 9LIANG Yi-xiong,WANG Lei,XIANG Yao,et al.Feature selection viasparse approximation for face recognition[C]//Proc of Computer Sci-ence and Pattern Recognition.2011.
  • 10MALLAT S G,ZHANG Zhi-feng.Matching pursuits with time-frequen-cy dictionaries[J].IEEE Trans on Signal Processing,1993,41(12):3397-3415.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部