期刊文献+

基于BP神经网络的齿轮故障诊断系统研究 被引量:11

Study on Gear Fault Diagnosis System Based on BP Neural Network
下载PDF
导出
摘要 对BP神经网络在齿轮故障诊断中的模式表达、网络拓扑及其相关参数等问题进行了探讨;并利用BP 网络对齿轮四种典型的故障模式进行训练学习和诊断,取得了满意的效果。结果表明:BP This paper presents artificial neural netwirk's essential principles and its features. The questions of model representations,BP model structures and relative parameters in the gear fault diagnosis are discussed. By using classical BP neural network, four kinds of typical pattems of gear faults have been studied and diagnosed and satisfied results have been acquired. The research results indicate that BP neural network with the excellent abilities of parallel distributed processing, self study, self adaptation, self organization, associative memory and its highly non linear pattern recognition is an efficient and feasible tool to solve complicated state identification problems in the gear fault diagnosis simultaneously.
出处 《机电工程》 CAS 1999年第5期81-82,共2页 Journal of Mechanical & Electrical Engineering
关键词 人工神经网络 BP算法 齿轮 故障诊断 Artifical Neural Network Back-Propagation(BP)Algorithm Gear Fault Diagnosis
  • 相关文献

同被引文献112

引证文献11

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部