期刊文献+

基于相关反馈的一种加权距离法

Weighted distance approach to relevance feedback
下载PDF
导出
摘要 在基于内容的图像检索系统中我们经常使用一些底层特征,如表现图像的颜色和文本信息。如果给出了这些特征的内容,如特征向量,我们就可以通过计算特征空间的距离测量出图像之间的相似度。然而,这些底层特征并不一定能反映人的视觉中高层概念的相似度。相关反馈技术就是通过交互检索来提高检索性能,在数据库的搜索中参考了用户的反馈信息。因此提出了一种加权距离法,数据库中的图像与用户选择的那些相关图像的特征值的标准偏差的比率就是该图像的加权值。反馈技术不仅适用于相互独立的权值还适用于增量更新的权值,并且这些权值反过来也改善了不同特征在数据库检索中的效果。实验中用平均查准率和增进来评估检索性能,在有1000幅图像的数据库中,首轮交互之后检索的性能就平均提高了19%。 Content-based image retrieval systems use low-level features like color and texture for image representation.Given these representations as feature vectors,similarity between images is measured by computing distances in the feature space.However,these low-level features cannot always express the high-level concept of similarity in human perception.Relevance feedback tries to improve the performance by introducing iterative retrievals where the feedback information from the user is incorporated into the database search.We present a weighted distance approach,where the weights are the rations of standard deviations of the feature values both for the whole database and also among the relevant images selected by the user.The feedback is used for both independent and incremental updating of the weights and these weights are used to iteratively refine the effects of different features in the database search.Retrieval performance is evaluated using average precision and progress that are computed on a database of 1,000 images and an average performance improvement of 19% is obtained after the first iteration.
出处 《电子测试》 2011年第5期40-43,共4页 Electronic Test
关键词 相关反馈 加权距离 图像检索 relevance feedback weighted distance image retrieval
  • 相关文献

参考文献8

二级参考文献108

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2胡瑞,樊养余,郝重阳,黄志理.基于线状要素提取的等高线图像矢量化方法研究[J].计算机工程与科学,2006,28(4):50-52. 被引量:4
  • 3孔月萍,曾平,李智杰,郑海红,徐培培.基于组合特征的高效数字识别算法[J].计算机应用研究,2006,23(10):172-173. 被引量:9
  • 4王耀南,王绍源,毛建旭.基于分形维数的图像纹理分析[J].湖南大学学报(自然科学版),2006,33(5):67-72. 被引量:13
  • 5邬长安,江祥奎,原思聪.基于灰色系统理论的相关反馈图像检索算法[J].情报杂志,2006,25(11):114-115. 被引量:3
  • 6Y Rui, et al. Relevance feedback: A powerful tool in interactive content- based image retrieval [ J ]. IEEE Transactions on Circuits and Video Technology, 1998,8 (5) : 644 -655.
  • 7J Huang, S R Kumar, M Mitra. Combining supervised learning with color correlograms for content - based image retrieval [ C ]. Proceedings of the 5th ACM International Conference on Multimedia, Seattle,Washington. USA. 1997. 325 -334.
  • 8I J Cox, M Miller, T P Minka, P Yianilos. An optimized interaction strategy for Bayesian relevance feedback [ C ]. Proceedings of International Conference Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998.553-558.
  • 9L Zhang, FLin, B Zhang. Support vector machine for image retrieval. Proceedings of IEEE International Conference on Image Processing[ J ]. Thessaliniki, Greece,2001.34 - 37.
  • 10S Tong, E Chang. Support vector machine active learning for image retrieval[ C]. Proceedings of ACM Multimedia, Ottawa, Canada, 2001. 322 - 347.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部