期刊文献+

二阶灰色神经网络在船舶横摇预报中的应用 被引量:5

Second order Gray Neural Network in ship roll forecast
下载PDF
导出
摘要 为了提高船舶的耐波性和适航性、对船舶横摇进行有效准确预报,提出了将灰色系统理论和神经网络进行有机结合的二阶灰色神经网络预报模型。介绍了二阶灰色预报模型,采用神经网络映射的办法构建灰色神经网络预报模型,并介绍了神经网络学习机制。另外,以某舰船横摇运动时间序列预报为例对模型进行仿真验证,有效改善了二阶灰色模型较大的预报偏差。仿真结果表明,GNNM(2,1)模型能准确预报船舶横摇运动,具有更高的预报精度和更好的数据稳定性。 To enhance the ship's seakeeping capacity and seaworthiness, a second order Gray Neural Network forecasting model is presented to forecast roll motion accurately. The gray system and its gray model are introduced, then using neural network mapping approach to build the second order GNNM(2, 1) model. On the other hand, the learning algorithm is presented. Further more, GNNM(2, 1) is applied in a sample of ship roll series and effectively improves large prediction error of second order gray model. The simulation results prove that the new model is more accurate and stable than tradition models.
出处 《船舶力学》 EI 北大核心 2011年第5期468-472,共5页 Journal of Ship Mechanics
基金 985工程学科建设项目(0000-x07204)
关键词 灰色神经网络 船舶横摇 预报 GNNM(2 1) Gray Neural Network ship roll forecast GNNM(2, 1)
  • 相关文献

参考文献4

  • 1沈继红,尚寿亭,赵希人.舰船纵摇运动函数变换型GM(1,1)模型研究[J].哈尔滨工业大学学报,2001,33(3):291-294. 被引量:22
  • 2袁景凌,钟珞,李小燕.灰色神经网络的研究及发展[J].武汉理工大学学报,2009,31(3):91-93. 被引量:49
  • 3Zhong Luo, Yuan Jingling, Xia Hongxia, et al. A study on Gray Neural Network Modeling[C]//Proceedings of the First International Conference on Machine Learning and Cybernetics. Beijing, China, 2002: 2021-2023.
  • 4Song Huazhu, Han Bo. Neural network modeling study of one dimension gray problem GNNM(1,1)[C]//Info-tech and Info-net Proceedings ICII. Beijing, 2001(3): 491-497.

二级参考文献13

  • 1Yuan jingling, Zhong luo, Jiang qiong. A Study on Grey RBF Prediction Model [A]. Proceedings of IEEE, ICMLC2005 [ C]. 2006. 4140-4143.
  • 2Yuan Jingling,Zhong Luo. The Dynamic Grey Radial Basis Function Prediction Model and Its Applications[AJ. Proceeding of IEEE ICICIC06[C]. 2006. 582-585.
  • 3Zhong Luo, Yuan Jingling, Xia Hongxia, et al. A Study on Gray Neural Network Modeling[A]. Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, China[C]. 2002. 2021-2023.
  • 4Shen Jihong,Advances in Systems Science and Applications,2001年
  • 5MIYATA Hideaki,J Ship Res,1992年,36卷,4期
  • 6傅立,灰色系统理论及其应用,1992年
  • 7邓聚龙,灰色系统基本方法,1987年
  • 8阮萍,雷镇,王华.基于灰色系统和人工神经网络的中长期电力负荷预测[J].计算机应用,2004,24(S1):285-286. 被引量:8
  • 9钟珞,白振刚,夏红霞,周兴刚,马志军.灰色问题神经网络建模优化及其应用[J].计算机工程与应用,2001,37(9):33-34. 被引量:23
  • 10钟珞,白振刚,夏红霞,吕宏辉,周兴刚.灰色问题神经网络建模的白化方法[J].模式识别与人工智能,2001,14(2):145-149. 被引量:2

共引文献69

同被引文献55

  • 1彭秀艳,赵希人,高奇峰.船舶姿态运动实时预报算法研究[J].系统仿真学报,2007,19(2):267-271. 被引量:45
  • 2刘祖源,张谢东,吴秀恒.船舶操纵性能预报的人工神经网络方法[J].武汉交通科技大学学报,1997,21(1):1-5. 被引量:10
  • 3SON K H, NOMOTO K. On the coupled motion of steering and rolling of a high speed container ship[J]. NavalArchitecture and Ocean Engineering, 1982,20: 73-83.
  • 4FOSSEN T I. Guidance and control of ocean vehicles[M]. John Wiley & Sons Inc. New York, USA, 1994.
  • 5BLANKE M, JENSEN A G Dynamic properties of a container vessel with low metacentric height[J]. Transactions of theInstitute of Measurement and Control, 1997,19(2): 78-93.
  • 6HESS D E,FALLER W E. Simulation of ship manoeuvres using recursive neural networks[C]// Proceeding of 23rdSymposium on Naval Hydrodynamics, Val de Reuil, France, 2001: 223-242.
  • 7LUO W L, ZOU Z J, Parametric identification of ship maneuvering models by using support vector machines[J]. Journalof Ship Research, 2009, 53(1): 19-30.
  • 8YIN J C, ZOU Z J, XU F. On-line prediction of ship roll motion during maneuvering using sequential learning RBF neuralnetworks [J]. Ocean engineering, 2013, 61: 139-147.
  • 9SON K H, NOMOTO K. On the coupled motion of steering and rolling of a high speed container ship[J]. Naval Architecture and Ocean Engineering, 1982, 20:73-83.
  • 10FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons Inc. New York, USA, 2011.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部