期刊文献+

具有时滞的Lotka-Volterra模型的Hopf分支与数值模拟 被引量:4

Hopf Bifurcation and Simulation of Lotka-Volterra Model with Delay
下载PDF
导出
摘要 研究了一类具有离散和分布时滞的Lotka-Volterra模型的稳定性和Hopf分支问题。由特征值理论且以时滞为参数,得到正平衡态局部渐近稳定的充要条件和Hopf分支存在的充分条件。根据中心流形定理以及规范型理论,得到分支值附近分支周期解稳定性。用Matlab绘制出模型数值解的图像,验证了所得结论的正确性;并结合图形讨论了各参数变化对分支周期解的影响。 The stability and Hopf bifurcation about Lotka-Volterra model with discrete and distributed delay are investigated.According to the theory of characteristic equation and regarding the delay as parameter,necessary and sufficient condition for the local asymptotical stability of the steady state and the sufficient condition the existence of Hopf bifurcation are obtained.In term of the center manifold and normal form theory,the direction of Hopf bifurcation and the stability of periodic bifurcation solution are discussed.Finally,several numerical examples are given by Matlab to support the theoretical conclusions,besides the influence of every parameter for the bifurcated periodic solutions are discussed by compare the pictures.
出处 《科学技术与工程》 2011年第15期3366-3371,3376,共7页 Science Technology and Engineering
基金 国家自然科学基金(10871122 60671063)资助
关键词 分布时滞 HOPF分支 分支周期解 稳定性 distributed delay Hopf bifurcation periodic bifurcation solution stability
  • 相关文献

参考文献8

  • 1May R M. Time delay versus stabihty in population models with two and three trophic levels. Ecology, 1973 ;4:315-325.
  • 2Yan X. -P. , Zhang C. -H. Hopf bifurcation in a delayed Lotka-Voherra predator-prey system. Nonlinear Analysis : RWA, 2006 ; 09. 007, 114-127.
  • 3Gopalsamy K. Stability and oscillation in delay differential equations of population dynamics. Kluwer: Dordrecht Academic publishers, 1992.
  • 4杨小婧,陈斯养.具有混合时滞血液模型的Hopf分支与数值分析[J].计算机工程与应用,2010,46(31):139-142. 被引量:4
  • 5邓志坚,陈斯养.一类具有时滞的广义生态模型的Hopf分支周期解[J].科学技术与工程,2010,10(11):2585-2590. 被引量:3
  • 6Ma Zhangping, Feng Hai, Liu Chunying. Stability and Hopf bifurcation analysis on a predator-prey model with discrete and distributed delays. Nonlinear Analysis : RWA ,2009 ; 10 : 1160-1172.
  • 7Hassard B, Kazarin ff D, Wan Y. Thory and application of Hopf bifurcation. Gambridge : Cambridge Niversity Press, 1981.
  • 8薛定宇,陈阳泉.高等应用数学问题的Madab求解(第二版).北京:清华大学出版社,2009.

二级参考文献11

共引文献5

同被引文献20

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部