期刊文献+

基于兴趣度的隐私保护关联规则挖掘算法 被引量:2

Privacy preserving association rule mining algorithm based on interest measure
下载PDF
导出
摘要 基于启发式的隐私保护关联规则挖掘算法常通过删除项或增加项改变规则的支持度,现有的通过删除项的隐私保护关联规则挖掘算法设计过程中通常忽略了兴趣度和规则的左件,导致对非敏感规则的支持度和数据可用性影响很大。针对上述不足,在算法设计过程中引入了兴趣度和逐步移项的思想,通过对敏感规则的左右件选择性地适当处理,不仅成功隐藏了指定隐私规则集,同时降低了对非敏感规则支持度的影响,提高了数据的可用性。理论和实验结果表明i,f-then算法具有较好的隐私性和高效性。 In order to change the support of rules, the heuristic approaches are usually realized by deleting an item or inserting item. Existing privacy preserving association rule mining algorithms by removing item usually neglected interest measure and the left hand of rules, which affect non-restrictive rule support and availabity ofdata negatively. Focusing on the shortcoming, an effective privacypre- serving algorithm is proposed. Trough bringing interest measure and proper item (left or right part) deal, reducing modifying ratio, a greater degree of hiding is made while a less degree impact for the non-sensitive rules can be made too. Theoretical analysis and experimental results show that the algorithm of if-then is highly efficient and has got good privacy.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第6期2124-2128,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(50674086)
关键词 隐私保护 关联规则 数据挖掘 兴趣度 敏感规则 privacy preserving association rule data mining interest measure sensitive rules
  • 相关文献

参考文献16

  • 1郭宇红,童云海,唐世渭,杨冬青.数据库中的知识隐藏[J].软件学报,2007,18(11):2782-2799. 被引量:14
  • 2Oliveira S R M,Zaiane O R.Protecting sensitive knowledge by data sanitation[C].Proc of the 3rd Int'l Conf on Data Mining. IEEE Computer Society,2003:613-616.
  • 3张瑞,郑诚.基于隐私保护的关联规则挖掘算法[J].计算机工程,2009,35(4):78-79. 被引量:5
  • 4张瑞,郑诚,陈娟娟.一种简单的基于隐私保护的关联规则挖掘方法[J].计算机工程与应用,2008,44(28):130-132. 被引量:6
  • 5李霞,陈子军,吕庆春.基于移项的隐私保护关联规则挖掘算法[J].计算机工程,2009,35(12):59-60. 被引量:3
  • 6Verykios V S, Elmagarmid A, Bertino E, et al. Association rule hiding [J]. IEEE Trans on Knowledge and Data Engineering, 2004,16(4) :434-447.
  • 7Zhang Xiaoming.Knowledge hiding in data mining by transaction adding and removing [C]. 31 st Annual International Computer Software and Applications Conference,2007:273-274.
  • 8Wu Chieh-Ming, Huang Yin-Fu.An efficient data structure for mining generalized association rules [C]. The 5th International Conference on Fuzzy Systems and Knowledge Discovery,2008: 565-571.
  • 9Sun Wei,Wang Yonggui.Association rule mining algorithm based on Privacy preserving [C].Computer and Automation Engineering,2010:140-143.
  • 10Oliveira S R M,Zaiane O R.A unified framework for protecting sensitive association rules in business collaboration[J].Intemational Journal of Business Intelligence and Data Mining,2006,1 (3):247-287.

二级参考文献104

共引文献243

同被引文献69

  • 1范海潮,顾理平.探寻平衡之道:隐私保护中知情同意原则的实践困境与修正[J].新闻与传播研究,2021(2):70-85. 被引量:45
  • 2沈伟伟.论数字紧急状态的恢复机制——以新冠疫情防控为例[J].清华法学,2021,15(2):121-142. 被引量:27
  • 3孟小峰,王雷霞,刘俊旭.人工智能时代的数据隐私、垄断与公平[J].大数据,2020,6(1):35-46. 被引量:17
  • 4Verykios VS,Elmagarmid AK,Bertino E,et al.Association rule hiding[].IEEE Transactions of Knowledge and Data Engineering.2004
  • 5Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[].Proceedings of the ACM SIGMOD Conference on Management ofdata.1993
  • 6Oliveira S R M,,Zaiane O R.Protecting sensitive knowledge bydata sanitation[].Proc of the rd Int’’ Conf on Data Mining.2003
  • 7Oliveira S R M,Zaiane O R.Algorithms for Balancing Privacy and KnowledgeDiscovery in Association Rule Mining[]..2003
  • 8Vassilios S. Veyrkios,Elisa Bertino,Igor Nai Fovino.State-of-the in Privacy Preserving Data Mining[].ACM SIGMOD Record.2004
  • 9M.Atallah,E.Bertino,A.Elmagarmid,M.Ibrahim,V.S.Verykios.Disclosure Limitation of Sensitive Rules[].Procof the IEEEWorkshop on Knowledge and Data Engineering Exchange.1999
  • 10Oliveira SRM,Za ane OR.Privacy Preserving Frequent ItemsetMining[].Proceedings of the lEEE International Conference on PrivacySecurity and Data Mining (PSDM’’).2002

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部