期刊文献+

新型背景混合高斯模型 被引量:29

A novel background Gaussian mixture model
原文传递
导出
摘要 针对背景减除法中经典混合高斯模型计算量过大的问题,提出一种新的背景混合高斯模型。该方法利用偏差均值作为判断模型是否与当前像素值匹配的阈值参数,有效减少了经典模型中由于开平方及指数运算带来的庞大计算量;同时引入持续平稳时间的概念,采用非线性权值更新方法,能够使较长时间停留在场景中的物体迅速成为背景。实验结果表明,该方法显著提高了背景模型的计算效率。 A deficit of classic Gaussian mixture model in background subtraction is the high computation cost. To solve this problem, a novel algorithm is proposed in this paper. A threshold parameter corresponding to the mean of deviation is utilized to judge whether a model matches the current pixel intensity. The new algorithm efficiently reduces the calculation burden of the operation of square and exponent with classical model; meanwhile, a non-linear weight updating approach is adopted, with the notion of sustain stationary time introduced in, and hence the quick converting of a relative long still object in scene into the background is achievable. Experimental results show that the new algorithm has significantly improved the calculation efficiency of background model.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第6期983-988,共6页 Journal of Image and Graphics
关键词 目标检测 背景模型 混合高斯模型 权值更新 object detection background model Gaussian mixture model weight updating
  • 相关文献

参考文献13

  • 1Jain R, Nagel H. On the analysis of accumulative difference pictures from image sequences of real world scenes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2) : 206-214.
  • 2Wren C R, Azarbayejani A, Darrell T, et al: Pfinder: real-time tracking of the human body [ J ]. IEEE Transactions on PAMI, 1997, 19(7) : 780-785.
  • 3Grimson W E L, Stauffer C, Romano R, et al. Using adaptive tracking to classify and monitor activities in a site [ C ] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 1998 : 22-29.
  • 4Koller D, Weber J, Huang T, et al. Towards robust automatic traffic scene analysis in real-time [ C ] //International Conference of Pattern Recognition. Jerusalem, Israel: IEEE Computer Society, 1994:126-131.
  • 5Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach [ C ] // Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, CA : Morgan Kaufmann Publishers, 1997 : 175-181.
  • 6Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ C ] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Cambridge, MA: IEEE Computer Society, 1999: 1063-1069.
  • 7Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[ C ] // Proceedings of the 6th European Conference on Computer Vision. Dublin Ireland: Springer, 2000 : 751-767.
  • 8Ren Y, Chua C S, Ho Y K. Motion detection with non-stationary background[ J]. Machine Vision and Application, 2003, 13 (5- 6) : 332-343.
  • 9Pless R, Larson J, Siebers S, et al. Evaluation of local models of dynamic backgrounds [ C ] // IEEE Proceedings on Computer Vision and Pattern Recognition. Madison, WI: IEEE Computer Society, 2003: 73-78.
  • 10Mittal A, Paragios N. Motion-based background subtraction using adaptive kernel density estimation [ C ] // IEEE Proceedings on Computer Vision and Pattern Recognition. IEEE Computer Society. Los Alamitos, CA, USA: IEEE Computer Society, 2004 : 302-309.

同被引文献251

引证文献29

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部