期刊文献+

The Schwarz-Pick lemma for planar harmonic mappings 被引量:9

The Schwarz-Pick lemma for planar harmonic mappings
原文传递
导出
摘要 The classical Schwarz-Pick lemma for holomorphic mappings is generalized to planar harmonic mappings of the unit disk D completely. (I) For any 0 < r < 1 and 0 ρ < 1, the author constructs a closed convex domain Er,ρ such that F((z,r)) eiαEr,ρ = {eiαz : z ∈ Er,ρ} holds for every z ∈ D, w = ρeiα and harmonic mapping F with F(D)D and F(z) = w, where △(z,r) is the pseudo-disk of center z and pseudo-radius r; conversely, for every z ∈ D, w = ρeiα and w ∈ eiαEr,ρ, there exists a harmonic mapping F such that F(D) D, F(z) = w and F(z ) = w for some z ∈ △(z,r). (II) The author establishes a Finsler metric Hz(u) on the unit disk D such that HF(z)(eiθFz(z) + e-iθFz(z)) ≤1 /(1- |z|2)holds for any z ∈ D, 0 θ 2π and harmonic mapping F with F(D)D; furthermore, this result is precise and the equality may be attained for any values of z, θ, F(z) and arg(eiθFz(z) + e-iθFz(z)). The classical Schwarz-Pick lemma for holomorphic mappings is generalized to planar harmonic mappings of the unit disk D completely. (I) For any 0 〈 r 〈 1 and 0 ρ 〈 1, the author constructs a closed convex domain Er,ρ such that F((z,r)) eiαEr,ρ = {eiαz : z ∈ Er,ρ} holds for every z ∈ D, w = ρeiα and harmonic mapping F with F(D)D and F(z) = w, where △(z,r) is the pseudo-disk of center z and pseudo-radius r; conversely, for every z ∈ D, w = ρeiα and w ∈ eiαEr,ρ, there exists a harmonic mapping F such that F(D) D, F(z) = w and F(z ) = w for some z ∈ △(z,r). (II) The author establishes a Finsler metric Hz(u) on the unit disk D such that HF(z)(eiθFz(z) + e-iθFz(z)) ≤1 /(1- |z|2)holds for any z ∈ D, 0 θ 2π and harmonic mapping F with F(D)D; furthermore, this result is precise and the equality may be attained for any values of z, θ, F(z) and arg(eiθFz(z) + e-iθFz(z)).
作者 CHEN HuaiHui
出处 《Science China Mathematics》 SCIE 2011年第6期1101-1118,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10671093)
关键词 harmonic mappings Schwarz-Pick lemma Finsler metric 调和映射 平面谐波 引理 Finsler度量 全纯映射 EI arg 单位
  • 相关文献

参考文献8

  • 1LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 2Georg Pick.über eine Eigenschaft der konformen Abbildung kreisf?rmiger Bereiche[J]. Mathematische Annalen . 1915 (1)
  • 3Georg Pick.über die Beschr?nkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden[J]. Mathematische Annalen . 1915 (1)
  • 4Chen H H,Gauthier P M,Hengartner W.Bloch constants for planar harmonic mappings. Proceedings of the American Mathematical Society . 2000
  • 5Ahlfors,L.V. Conformal invariants: topics in geometric function theory . 1973
  • 6Bshouty D,Hengartner W.Univalent harmonic mappings in the plane. Ann Univ Mariae Curie-Sklodowska Sect A . 1994
  • 7Heinz,E.On one-to-one harmonic mappings. Pacific Journal of Mathematics . 1959
  • 8Landau,E.Der Picard-Schottkysche Satz und die Blochsche Konstante. Preuss. Akad. Wiss. Berlin, Phys.-Math . 1926

二级参考文献10

  • 1Huaihui Chen,Chengji Xiong.Julia’s lemma and bloch constants[J]. Science in China Series A: Mathematics . 2003 (3)
  • 2DorM,Nowak M.Landau’s theorem for planar harmonic mappings. Comput Methods Funct Theory . 2000
  • 3Grigoryan A.Landau and Bloch theorems for harmonic mappings. Complex Variables Theory and Application . 2006
  • 4Huang X Z.Estimates on Bloch constants for planar harmonic mappings. Journal of Mathematical Analysis and Applications . 2007
  • 5Chen H H,Xiong C J.Julia’s lemma and Bloch constants. Sci China Ser A-Math . 2003
  • 6Chen H H.On the Bloch constant. Approximation, Complex Analysis, and Potential Theory . 2001
  • 7Lewy,H.On the non-vanishing of the Jacobian in certain one-to-one mappings. Bulletin of the American Mathematical Society . 1936
  • 8CHEN H,,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings. Poc AmerMath Soc . 2000
  • 9Graham,I.,Kohr,G. Geometric Function Theory in One and Higher Dimensions . 2003
  • 10Kuang Jichang.Applied Inequalities. . 2004

共引文献15

同被引文献30

  • 1LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 2DAI ShaoYu1,2,CHEN HuaiHui1 & PAN YiFei3,4 1Department of Mathematics,Nanjing Normal University,Nanjing 210097,China,2Department of General Study Program,Jinling Institute of Technology,Nanjing 211169,China,3School of Mathematics and Informatics,Jiangxi Normal University,Nanchang 330022,China,4Department of Mathematical Sciences,Indiana University-Purdue University Fort Wayne,Fort Wayne,IN 46805-1499,USA.The high order Schwarz-Pick lemma on complex Hilbert balls[J].Science China Mathematics,2010,53(10):2649-2656. 被引量:7
  • 3CHEN HuaiHui Department of Mathematics, Nanjing Normal University, Nanjing 210097, China.Some new results on planar harmonic mappings[J].Science China Mathematics,2010,53(3):597-604. 被引量:2
  • 4Liulan Li,Saminathan Ponnusamy.Solution to an open problem on convolutions of harmonic mappings[J].Complex Variables and Elliptic Equations.2013(12)
  • 5Zhi-Hong Liu,Ying-Chun Li,Irena Lasiecka.The Properties of a New Subclass of Harmonic Univalent Mappings[J].Abstract and Applied Analysis.2013
  • 6Shaolin Chen,Saminathan Ponnusamy,Xiantao Wang.Covering and distortion theorems for planar harmonic univalent mappings[J].Archiv der Mathematik.2013(3)
  • 7Zhi-Gang Wang,Zhi-Hong Liu,Ying-Chun Li.On the linear combinations of harmonic univalent mappings[J].Journal of Mathematical Analysis and Applications.2012
  • 8Michael Dorff,Maria Nowak,Magdalena Wo?oszkiewicz.Convolutions of harmonic convex mappings[J].Complex Variables and Elliptic Equations.2012(5)
  • 9Huaihui Chen,Paul M. Gauthier.The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings[J].Proceedings of the American Mathematical Society.2010(2)
  • 10Michael Dorff.Convolutions of planar harmonic convex mappings[J].Complex Variables and Elliptic Equations.2001(3)

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部