期刊文献+

基于情绪传染的自适应变主体股市演化 被引量:8

Stock Market Evolution with Adaptive Multi-agents and Sentiment Contagion
下载PDF
导出
摘要 投资者信念传染、投资思想体系演化及其对市场的影响,是当前金融(包括行为金融)研究领域的热点问题之一。借鉴SIRS型传染病模型的建模思想,并融入交易者自适应进出市场的机制,建立基于情绪传染的自适应变主体股市演化模型。对模型进行理论和数值仿真分析发现:①在同一核心演化机制下,股市情绪传染与自适应机制内生地驱动股价呈现基本面价值稳定均衡、局部收敛与发散等不同形态;②股市情绪极值点与股价极值点不同步。 Investors' sentiment contagion,evolution of financial ideologies and their effects on stock markets,are one of popular research problems in modern finance,including behavioral finance.Based on the modeling idea of SIRS infectious disease,a stock market evolution model with adaptive multi-agents and sentiment contagion is built by incorporating mechanism that investors adaptively flow in and out the markets.Theoretical analyses and numerical simulation show that:(1) In the same core evolution dynamics,market sentiment contagion and adaptivity mechanism can endogenetically drive the stock price to the equilibrium in terms of fundamental value while converging and diverging locally;(2) The arriving of market sentiment extrema and the price's extrema is asynchronous.
出处 《系统管理学报》 CSSCI 北大核心 2011年第3期327-334,共8页 Journal of Systems & Management
基金 国家自然科学基金资助项目(7080101970771029) 广东省自然科学基金资助项目(07001795) 广东省哲学社会科学"十一五"规划学科共建项目基金资助项目(06GO03)
关键词 股票定价 演化系统 SIRS型传染病模型 情绪传染 自适应 stock pricing evolution system SIRS infectious disease sentiment contagion adaptivity
  • 相关文献

参考文献17

  • 1Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature, 1999,397(6719) : 498-500.
  • 2Hirshleifer D, Siew Hong Teoh. Thought and behavior contagion in capital markets[M], in "Handbook of Financial Markets.. Dynamics and Evolution", Edited By Thorsten Hens and Klaus Schenk-Hoppe, Hardbound, NORTH HOLLAND, 2009.
  • 3Hommes C, Wagener F. Complex evolutionary systems in behavioral finance[M], in "Handbook of Financial Markets: Dynamics and Evolution", Edited By Thorsten Hens and Klaus Schenk-Hoppe, Hardbound, NORTH HOLLAND, 2009.
  • 4Gaunersdorfer A, Hommes C H, Wagener F O O. Bifurcation routes to volatility clustering under evolu- tionary learning[J]. Journal of Economic Behavior Organization, 2008, 67 : 27-47.
  • 5Boswijk H P, Hommes C H, Sebastiano. Behavioral heterogeneity in stock prices[J]. Journal of Economic Dynamics &Control, 2007, 31: 1938-1970.
  • 6Brock W A, Hommes C H, Wagener F O O. Evolutionary dynamics in markets with many trader types [J]. Journal of Mathematical Economics, 2005, 41: 7-42.
  • 7Tesfatsion L, Judd K. Handbook of computational economics (vol. 2) : Agent-based computational economics [M ]. Amsterdam: North-Holland, 2006 : 187-1233.
  • 8Brock W A, Hommes C H, Wagener F O O. Evolutionary dynamics in markets with many trader types [J].Journal of Mathematical Economics, 2005, 42: 7-42.
  • 9Lux T. Stochastic behavioral asset pricing models and the stylized faets[M], in "Handbook of Financial Markets: Dynamics and Evolution", Edited By Thorsten Hens and Klaus Schenk-Hoppe, Hardbound, NORTH HOLLAND, 2009.
  • 10Lux T, Marchesi M. Volatility clustering in financial markets: A micro-simulation of interacting agents [J]. International Journal of Theoretical and Applied Finance, 2000, 3, 675-702.

二级参考文献17

  • 1石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率βI^pS^q的SI模型分析[J].高校应用数学学报(A辑),2008,23(1):7-12. 被引量:2
  • 2方福康.经济和生态环境的复杂性研究[J].科学中国人,2004(10):34-36. 被引量:4
  • 3杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 4Scheinkman A, LeBaron B. Nonlinear dynamics and stock returns[J]. Journal of Business, 1989, 62(3) : 311--337.
  • 5Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[ J]. Nature, 1999, 397 (6719) : 498--500.
  • 6Lux T. Herd behavior, bubbles and crashes[ J].Economic Journal, 1995, 105 (5) : 881--896.
  • 7Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 8Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size [J]. Mathematical and computer modeling (S0895-7177), 2002, 35(11-12): 1235-1243.
  • 9Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2) 389-394.
  • 10Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and purse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.

共引文献14

同被引文献72

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部