期刊文献+

基于改进AAM的人脸特征点提取 被引量:3

Face feature points extraction based on refined AAM
下载PDF
导出
摘要 提出了具有鲁棒性的基于局部二值模式LBP纹理提取人脸特征点的主动外观模型AAM算法(LBP-AAM).首先建立3种人脸模型实例(正面,左转及右转人脸模型);然后应用LBP判断和预测测试图片的旋转类型,依据预测结果选择合理的模型实例去匹配;最后提取出人脸特征点.实验结果证明本方法比传统的AAM方法在精度上提高了27%,效率上提高了9%. In this paper,we propose a robust facial feature points extraction method-LBP-AAM(L-AAM),using active appearance model(AAM) based on local binary pattern(LBP) texture features.We firstly generated three types of model instances(frontal,left-rotated and right-rotated),and LBP was used to judge the type of test facial image and predict the rotation of the test the face,and according to the prediction we selected proper model instances as the fitting model.Finally we extracted the feature points of the face.Experimental results proved that this method increased the fitting accuracy rate by about 27% and the time consumption was decreased by about 9% comparing with the standard AAM method.
出处 《应用科技》 CAS 2011年第4期35-38,共4页 Applied Science and Technology
关键词 主动外观模型 局部二值模式 局部二值模式主动外观模型 模型实例 人脸特征点 active appearance model(AAM) local binary pattern(LBP) L-AAM model instance facial feature point
  • 相关文献

参考文献6

二级参考文献31

  • 1王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 2侯云舒,付中华,张艳宁,赵荣椿.基于改进ASM的人脸特征点提取[J].计算机应用研究,2006,23(11):255-257. 被引量:8
  • 3Matthews I and Baker S. Active appearance models revisited. International Journal of Computer Vision, 2004, 60(2): 135-164.
  • 4Faggian N, Paplinski A, and Chin T J. Face recognition from video using active appearance model segmentation. IEEE International Conference on Pattern Recognition, HongKong China, Aug. 2006, 1: 287-290.
  • 5Wu Y W and Ai X Y. Face detection in color images using adaboost algorithm based on skin color information. International Workshop on Knowledge Discovery and Data Mining, Adelaide, Australia, Jan. 2008: 339-342.
  • 6Demirkir C and Sankur B. Object detection using haar feature selection optimization. IEEE 14th Signal Processing and Communications Applications, Sabanc university, Turkey, Apr. 2006: 1-4.
  • 7Whaley R C, Petitet A, and Dongarra J J. Automated empirical optimization of software and the ATLAS project. Parallel Computing, 2001, 27(1-2): 3-35.
  • 8Kinoshita K, Ma Y, and Lao S, et al.. A fast and robust 3D head pose and gaze estimation system. ACM 8th International Conference on Multimodal Interfaces, Banff, Canada, Nov. 2006: 137-138.
  • 9Ranganathan A, Kaess M, and Dellaert F. Fast 3D pose estimation with out-of-sequence measurements. IEEE International Conference on Intelligent Robots and Systems, San Diego, Australia, Oct. 2007: 2486-2493.
  • 10Stegmann M B. IMM face database, http://www2.imm.dtu. dk/-aam/datasets/datasets.html/, 2008, 4.

共引文献32

同被引文献28

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 3KIRBY M, SIROVICH L. Application of the Karhunen-Lo- eve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1990, 12 (1): 103-108.
  • 4TURK M, PENTLAND A. Eigenfaces for recognition [ J ]. International Journal of Cognitive Neuroscience, 1991, 3 (1) : 71-86.
  • 5ZHUANG X S, DAI D Q. Improved discriminant analysis for high-dimensional data and its application to face recogni- tion[J]. Pattern Recognition, 2007, 40 (5) : 1570-1578.
  • 6GAO Q X, ZHANG L, ZHANG D. Face recognition using FLDA with single training image per-person [ J ]. Applied Mathematics and Computation, 2008, 205 (12) : 726-734.
  • 7ZHAO H T, YUEN P C. Incremental linear discriminant analysis for face recognition [ J ]. IEEE Trans Syst Man Cy- bern B, 2008, 38(1) : 210-211.
  • 8BASU S. Semi-supervised clustering: probabilistic models, algorithms and experiments [ D ]. Austin : The University of Texas, 2005 : 32-33.
  • 9ZHU X J. Semi-supervised learning literature survey [ R ]. Madison: University of Wisconsin-Madison, 2005 : 28-31.
  • 10ZHANG S W, LEI Y K, WU Y H. Semi-supervised local- ly discriminant projection for classification and recognition [ J ]. Knowledge-Based Systems, 2011,24 (2) : 341-346.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部