摘要
一个约束描述了一个应该被满足的关系,一旦用户已经定义了一系列的关系,那么在修改参数之后,系统会自动选择合适的状态来满足约束.在将几何约束问题的约束方程组转化为优化模型的时候,引入一种利用元胞演化规律和蚂蚁寻优特点的离散元胞蚂蚁算法.离散元胞蚂蚁算法是一种新型的仿生算法,它利用元胞在离散元胞空间的演化规律和蚂蚁寻优的特点,为解决实际问题提供了一种优化方法.实验表明,该方法可以比较有效的处理几何约束问题.
A constraint can describe a relation to be satisfied.Once the user defines a series of relations,the system will select a proper state to satisfy the constraints after the parameters are modified.When transferring the geometric constraint equation group into the optimization model,we adopt a discrete cellular ant algorithm(DCAA) by evolutionary rule of cells and characteristics of ant colony optimization.Discrete cellular ant algorithm is a new type of bionic algorithm,which uses the evolution law of cellular in the discrete cellular space and the characteristics of ant optimization,and it provides an optimal way for solving practical problems.The experiment shows that the algorithm can solve the geometric constraint problems efficiently.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2011年第5期1127-1130,共4页
Acta Electronica Sinica
基金
中央高校基本科研业务费专项资金(No.N100404002)
关键词
几何约束求解
元胞自动机
蚂蚁算法
geometric constraint solving
cellular automata
ant algorithm